Fine Art

.


Nikolai Ivanovich Lobachevsky (Russian: Никола́й Ива́нович Лобаче́вский) (December 1, 1792–February 24, 1856 (N.S.); November 20, 1792–February 12, 1856 (O.S.)) was a Russian mathematician and geometer, renowned primarily for his pioneering works on hyperbolic geometry, otherwise known as Lobachevskian geometry.[1][2]


Biography

Lobachevsky was born in Nizhny Novgorod, Russia. His parents were Ivan Maksimovich Lobachevsky, a clerk in a landsurveying office, and Praskovia Alexandrovna Lobachevskaya. In 1800, his father died, and his mother moved to Kazan. In Kazan, Lobachevsky attended Kazan Gymnasium, graduating in 1807 and then Kazan University, which was founded just three years earlier in 1804. At Kazan University, Lobachevsky was influenced by professor Johann Christian Martin Bartels (1769–1833), a former teacher and friend of German mathematician Carl Friedrich Gauss. Lobachevsky received a Master's degree in physics and mathematics in 1811. In 1814, he became a lecturer at Kazan University, and, in 1822, he became a full professor, teaching mathematics, physics, and astronomy. He served in many administrative positions and became the rector of Kazan University in 1827. In 1832, he married Varvara Alexeyevna Moiseyeva. They had a large number of children (eighteen according to his son's memoirs, while only seven apparently survived into adulthood). He was dismissed from the university in 1846, ostensibly due to his deteriorating health: by the early 1850s, he was nearly blind and unable to walk. He died in poverty in 1856.

Work

Lobachevsky's main achievement is the development (independently from János Bolyai) of a non-Euclidean geometry, also referred to as Lobachevskian geometry. Before him, mathematicians were trying to deduce Euclid's fifth postulate from other axioms. Euclid's fifth is a rule in Euclidean geometry which states (in John Playfair's reformulation) that for any given line and point not on the line, there is one parallel line through the point not intersecting the line. Lobachevsky would instead develop a geometry in which the fifth postulate was not true. This idea was first reported on February 23 (Feb. 11, O.S.), 1826 to the session of the department of physics and mathematics, and this research was printed in the UMA (Вестник Казанского университета) in 1829–1830. Lobachevsky wrote a paper about it called A concise outline of the foundations of geometry that was published by the Kazan Messenger but was rejected when it was submitted to the St. Petersburg Academy of Sciences for publication.

The non-Euclidean geometry that Lobachevsky developed is referred to as hyperbolic geometry. Lobachevsky replaced Euclid's parallel postulate with the one stating that there is more than one line that can be extended through any given point parallel to another line of which that point is not part; a famous consequence is that the sum of angles in a triangle must be less than 180 degrees. Non-Euclidean geometry is now in common use in many areas of mathematics and physics, such as general relativity; and hyperbolic geometry is now often referred to as "Lobachevskian geometry" or "Bolyai-Lobachevskian geometry".

Some mathematicians and historians have wrongfully claimed that Lobachevsky stole his concept of non-Euclidean geometry from Gauss, which is untrue - Gauss himself appreciated Lobachevsky's published works very highly, but they never had personal correspondence between them prior to the publication. In fact out of the three people that can be credited with discovery of hyperbolic geometry - Gauss, Lobachevsky and Bolyai, Lobachevsky rightfully deserves having his name attached to it, since Gauss never published his ideas and out of the latter two Lobachevsky was the first who duly presented his views to the world mathematical community.[3]

Lobachevsky's magnum opus Geometriya was completed in 1823, but was not published in its exact original form until 1909, long after he had died. Lobachevsky was also the author of New Foundations of Geometry (1835-1838). He also wrote Geometrical Investigations on the Theory of Parallels (1840)[4] and Pangeometry (1855).[5]

Another of Lobachevsky's achievements was developing a method for the approximation of the roots of algebraic equations. This method is now known as the Dandelin–Gräffe method, named after two other mathematicians who discovered it independently. In Russia, it is called the Lobachevsky method. Lobachevsky gave the definition of a function as a correspondence between two sets of real numbers (Dirichlet gave the same definition independently soon after Lobachevsky).

In popular culture

* Lobachevsky is the subject of songwriter/mathematician Tom Lehrer's humorous song Lobachevsky from his Songs by Tom Lehrer album. In the song, Lehrer portrays a Russian mathematician who sings about how Lobachevksy influenced him: "And who made me a big success / and brought me wealth and fame? / Nikolai Ivanovich Lobachevsky is his name." Lobachevsky's secret to mathematical success is given as "Plagiarize!", as long as one is always careful to call it "research". According to Lehrer, the song is "not intended as a slur on [Lobachevsky's] character" and the name was chosen "solely for prosodic reasons".[6]
* In Poul Anderson's 1969 fantasy novella "Operation Changeling", which was later expanded into the fix-up novel Operation Chaos (1971), a group of sorcerers navigate a non-Euclidean universe with the assistance of the ghosts of Lobachevsky and Bolyai.
* Roger Zelazny's science fiction novel Doorways in the Sand contains a poem dedicated to Lobachevsky.
* 1858 Lobachevsk, an asteroid discovered in 1972, was named in his honor.


See also

* Hyperbolic geometry
* Hyperboloid structure
* Gauss-Bolyai-Lobachevsky space
* Upper half-plane
* Lobachevsky (crater)
* Lobachevsky Medal
* Lobachevsky University
* 1858 Lobachevsk


Notes

1. ^ E. T., Bell (1986). Men of Mathematics. Touchstone Books. p. 294. ISBN 978-0-671-62818-5. Author attributes this quote to another mathematician, William Kingdon Clifford.
2. ^ This is a quote from G. B. Halsted's translator's preface to his 1914 translation of The Theory of Parallels: "What Vesalius was to Galen, what Copernicus was to Ptolemy that was Lobachevsky to Euclid. –W. K. Clifford
3. ^ http://www-history.mcs.st-andrews.ac.uk/Biographies/Lobachevsky.html
4. ^ The 1914 English translation by George Bruce Halsted is available on http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=AAN2339
5. ^ The 1902 German translation by Heinrich Liebmann is available on http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABR5311
6. ^ Liner notes, "The Tom Lehrer Collection", Shout! Factory, 2010


External links

* O'Connor, John J.; Robertson, Edmund F., "Nikolai Lobachevsky", MacTutor History of Mathematics archive, University of St Andrews, http://www-history.mcs.st-andrews.ac.uk/Biographies/Lobachevsky.html .
* Web site dedicated to Lobachevsky (Spanish)

Mathematician

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Hellenica World - Scientific Library