In mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four.
Definition
The Dirichlet beta function is defined as
\( \beta(s) = \sum_{n=0}^\infty \frac{(-1)^n} {(2n+1)^s}, \)
or, equivalently,
\( \beta(s) = \frac{1}{\Gamma(s)}\int_0^{\infty}\frac{x^{s-1}e^{-x}}{1 + e^{-2x}}\,dx. \)
In each case, it is assumed that Re(s) > 0.
Alternatively, the following definition, in terms of the Hurwitz zeta function, is valid in the whole complex s-plane:
\( \beta(s) = 4^{-s} \left( \zeta\left(s,{1 \over 4}\right)-\zeta\left( s, {3 \over 4}\right) \right). \)
Another equivalent definition, in terms of the Lerch transcendent, is:
\( \beta(s) = 2^{-s} \Phi\left(-1,s,{{1} \over {2}}\right), \)
which is once again valid for all complex values of s.
Functional equation
The functional equation extends the beta function to the left side of the complex plane Re(s)<0. It is given by
\( \beta(s)=\left(\frac{\pi}{2}\right)^{s-1} \Gamma(1-s) \cos \frac{\pi s}{2}\,\beta(1-s) \)
where Γ(s) is the gamma function.
Special values
Some special values include:
\( \beta(0)= \frac{1}{2}, \)
\( \beta(1)\;=\;\tan^{-1}(1)\;=\;\frac{\pi}{4}, \)
\( \beta(2)\;=\;G, \)
where G represents Catalan's constant, and
\( \beta(3)\;=\;\frac{\pi^3}{32}, \)
\( \beta(4)\;=\;\frac{1}{768}(\psi_3(\frac{1}{4})-8\pi^4), \)
\( \beta(5)\;=\;\frac{5\pi^5}{1536}, \)
\( \beta(7)\;=\;\frac{61\pi^7}{184320}, \)
where \( \psi_3(1/4) \) in the above is an example of the polygamma function. More generally, for any positive integer k:
\( \beta(2k+1)={{{({-1})^k}{E_{2k}}{\pi^{2k+1}} \over {4^{k+1}}(2k)!}}, \)
where \( \!\ E_{n} \) represent the Euler numbers. For integer k ≥ 0, this extends to:
\( \beta(-k)={{E_{k}} \over {2}}. \)
Hence, the function vanishes for all odd negative integral values of the argument.
s | approximate value β(s) | OEIS |
---|---|---|
1/5 | 0.5737108471859466493572665 | |
1/4 | 0.5907230564424947318659591 | |
1/3 | 0.6178550888488520660725389 | |
1/2 | 0.6676914571896091766586909 | A195103 |
1 | 0.7853981633974483096156608 | A003881 |
2 | 0.9159655941772190150546035 | A006752 |
3 | 0.9689461462593693804836348 | A153071 |
4 | 0.9889445517411053361084226 | A175572 |
5 | 0.9961578280770880640063194 | A175571 |
6 | 0.9986852222184381354416008 | A175570 |
7 | 0.9995545078905399094963465 | |
8 | 0.9998499902468296563380671 | |
9 | 0.9999496841872200898213589 | |
10 | 0.9999831640261968774055407 |
See also
Hurwitz zeta function
References
Glasser, M. L. (1972). "The evaluation of lattice sums. I. Analytic procedures". J. Math. Phys. 14: 409. doi:10.1063/1.1666331.
J. Spanier and K. B. Oldham, An Atlas of Functions, (1987) Hemisphere, New York.
Weisstein, Eric W., "Dirichlet Beta Function" from MathWorld.
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License