Superregnum: Eukaryota
Regnum: Protista
Subregna: Biciliata - Sarcomastigota - Incertae sedis Protista
Name
Protista Haeckel, 1866
See also: Chromista – Protozoa
Alternative classifications
[Note: Protista is currently considered a paraphyletic or polyphyletic taxon, and taxonomists prefer to use only monophyletic taxa. See Eukaryota for more modern classifications of the groups previously placed here.]
Haeckel (1866, I)
Generelle morphologie der organismen, Bd. 1, pp. 206-220, [1].
Thierreich, Animalia
Vertebrata (Pachycardia et Leptocardia)
Mollusca (Cephalota et Acephala)
Articulata (Arthropoda, Vermes et Infusoria)
Echinodermata
Coelenterata
Protistenreich, Protista
Spongiae (Porifera)
Noctilucae (Myxocystoda)
Rhizopoda (Radiolaria, Actinosphaerida et Acyttaria)
Protoplasta (Arcellida, Amoebida et Gregarinae)
Moneres (Protamoebae, Protogenida et Vibriones)
Flagellata
Diatomea
Myxomycetes (Mycetozoa)
Pflanzenreich, Plantae
Phycophyta (Algae pro parte)
Characeae
Nematophyta (Fungi et Lichenes)
Cormophyta (Phanerogamae omnes et Cryptogamae exclusis Nematophytis, Characeis et Phycophytis)
Haeckel (1866, II)
Generelle morphologie der organismen, Bd. 2, [2]. See also plate 1, "Monophyletischer Stammbaum der Organismen", [3].
Protistenreich, Protista
1. Moneres
Gymnomoneres
Lepomoneres
2. Protoplasta
3. Diatomeae
4. Flagellata
5. Myxomycetes
6. Noctilucae
7. Rhizopoda
8. Spongiae
Pflanzenreich, Plantae
1. Archephyta
2. Florideae
3. Fucoideae
4. Characeae
5. Inophyta
Fungi
Lichenes
6. Cormophyta
Thierreich, Animalia
15. Coelenterata
Petracalephae
Nectacalephae
16. Echinodermata
17. Articulata
nfusoria
Vermes
Arthropoda
18. Mollusca
Himatega
Otocardia
19. Vertebrata
Leptocardia
Pachycardia
Haeckel (1868a)
Haeckel, E. 1868. Natürliche Schöpfungsgeschichte. 1st ed. Reimer, Berlin, [4]. See Dayrat (2003), [5].
"Polyphyletisher Stammbaum der Organismen" [p. 347]
Plantae
“Protista” [polyphyletic]
Labyrinthuleae
Myxomycetes
Diatomeae
Monera Neutra
Protoplasta
Rhizopoda
Flagellata
Animalia
"Polyphyletisher Stammbaum des Pflanzenreichs" [p. 382]
Fucoideae
Florideae
Archephyceae
Archephyta [paraphyletic] + Chlorophyceae [polyphyletic] + Cormophyta
Lichenes
Fungi
"Polyphyletisher Stammbaum des Thierreichs" [p. 392]
Acephalae
Spongiae
Colelminthes
Acineta
Archezoa [paraphyletic] + Infusoria
Ciliata
Platyelminthes
Himatega
Nematelminthes
"Einstämmiger oder Monophyletisher Stammbaum der Organismen" [plate I, [6]]
Pflanzenreich, Pflanzenreichs
Florideae
Fucoideae
Chloralgae + Muscinae + Filicinae + Gymnospermae + Angiospermae
Lichenes
Fungi
Protistenreich, Protista
Diatomea
Labyrinthulae
Myxomycetes
Monera neutra + Rhizopoda
Noctilucae
Flagellata
Protoplasta
Thierreich, Animalia
Coelenterata
Scolecida
Vermes (Scolecida + Colelminthes + Himatega) + Arthropoda + Vertebrata + Mollusca
Haeckel (1868b)
Haeckel, E. 1868. Monographie der Moneren. Jenaische Zeitschrift für Medicin und Naturwissenschaft 4: 64–144, [7]. See p. 122, 129-134. Translation: Monograph of Monera. Quarterly Journal of Microscopical Science, 1869, IX: 27-42, 113-134, 219-232, 327-342.
Protista
Monera
Gymnomonera (Protamaeba, Protogenes, Myxodictyum)
Lepomonera (Protomonas, Protomyxa, Vampyrella, Myxastrum)
Flagellata
Labyrinthulea (Labyrinthulae)
Diatomea
Phycochromacea
Fungi (Mycetes)
Phycomycetes (Saprolegnieae, Mucorinae etc.)
Hypodermiae (Uredineae, Ustilagineae etc.)
Basidiomycetes (Hymenomycetes, Gastromycetes etc.)
Ascomycetes (Protomycetes, Discomytes etc.)
Myxomycetes
Protoplasta
Noctilucae
Rhizopoda
Haeckel (1878)
Haeckel, E., 1878. Das Protistenreich. Eine Populäre Uebersicht über das Formengebiet der Niedersten Lebewesen. Ernst Günther's Verlag, Leipzig, 104 pp, [8].
Protista [p. 86-104]
Monera
Lobomonera (Protamoeba)
Rhizomonera (Protomyxa, Vampyrella, Bathybius)
Tachymonera or Schizomycetes (Bacterium, Vibrium, Spirillum)
Lobosa
Gregarinae
Flagellata
Catallacta
Ciliata
Acinetae
Labyrinthuleae
Bacillariae
Fungi
Phycomycetes
Coniomycetes
Ascomycetes
Gastromycetes
Hymenomycetes
Myxomycetes
Thalamophora
Heliozoa
Radiolaria
Entz (1888)
From Studien über Protisten, [9].
Protisten
Gregarinen
Rhizopoden
Flagellaten
Noctilucen
Ciliaten
Haeckel (1889)
Haeckel, E. 1889. Natürliche Schöpfungsgeschichte, 8th ed, [10]. See p. 452, 453, 462, 508.
Protistenreich
Protophyta (Protista vegetalia)
Klass I. Phytarcha
Phytomonera
Ordnung 1. Probiontes
Chromaceae
Ordnung 2. Chroococceae
Ordnung 3. Nostochineae
Klass II. Diatomeae
Klass III. Cosmariae (Desmidieae)
Klass IV. Palmellariae (Palmellaceae)
Klass V. Siphoneae (Coeloblastae)
Protozoa (Protista animalia)
Zoarcha (Zoocytoda)
Zoomonera
Lobomonera
Rhizomonera
Bacteria
Sphaerobacteria
Rhabdobacteria
Cytarcha
Lobosa (Amoebina)
Gregarinae (Sporozoa)
Infusoria
Flagellata (Mastigophora)
Ciliata
Acinetae (Suctoria)
Rhizopoda
Mycetozoa (Myxomycetes)
Heliozoa
Thalamaria (Foraminifera)
Radiolaria
Pflanzenreich
Thallota (Thallophyta)
Algae (Phycophyta)
Zygnemaceae
Conferveae
Fucoideae
Florideae
Characeae
Fungi (Inophyta)
Mycetes
Lichenes
Prothallota (Mesophyta)
Bryophyta
Pteridophyta
Phanerogamae (Anthophyta)
Gymnospermae
Cycadeae
Coniferae
Gnetaceae
Angiospermae
Monocotylae
Dicotylae
Thierreich
Coelenteria (Coelenterata, Zoophyta, Anaemaria)
Gastraeades
Spongiae
Cnidaria
Platodes
Coelomaria (Bilaterata, Bilateria, Haemataria)
Helminthes
Mollusca
Echinoderma
Articulata
Tunicata
Vertebrata
Haeckel (1894)
From Systematische phylogenie, 3 vols (vol. 1, Protisten und Pflanzen, 1894; vol. 2, Invertebrata, 1896; vol. 3, Vertebrata, 1895). [11].
[Vol. 1, p. 90-91:]
Pflanzen
Protophyta (Protista plasmodoma) [Vol. 1, p. 96]
Archephyta (Progonella)
Probiontes
Chromaceae (Phycochromaceae)
Algariae (Paulosporata)
Paulotomeae
Conjugatae
Diatomeae
Algettae (Zoosporata)
Mastigota
Melethallia
Siphoneae
Metaphyta (Histones plasmodomi) [Vol. 1, p. 256]
Thallophyta
Algae, [Vol. 1, p. 302]
Chlorophyceae
Charaphyceae
Phaeophyceae
Rhodophyceae
Mycetes [Vol. 1, p. 316]
Ascomycetes (Ascodiomycetes)
Basimycetes (Basidiomycetes)
Lichenes [Vol. 1, p. 325]
Diaphyta [Vol. 1, p. 330]
Bryophyta [Vol. 1, p. 336]
Pteridophyta
Anthophyta
Gymnospermae
Angiospermae
Thieren
Protozoa (Protista plasmophaga) [Vol. 1, p. 138]
Archezoa (= Zoarchega)
Bacteria (= Bactromonera)
Coccillida
Bacillida
Spirillida
Zoomonera (= Monera s. str.)
Lobomonera
Rhizomonera
Fungilli (= Sporozoa)
Rhizopoda
Infusoria
Metazoa (Histones plasmophagi)
Coelenteria (Acoelomia)
Gastraeades
Spongiae
Cnidaria
Platodes
Bilateria (Coelomaria)
Helminthes
Mollusca
Articulata
Echinoderma
Tunicata
Vertebrata
Walton (1930)
Walton, Lee Barker. 1930. Studies concerning organisms occurring in water supplies with particular reference to those found in Ohio. Ohio Biological Survey Bulletin, 24: 1–86, link.
Kingdom Bionta
Subkingdom Protistodeae
Phylum Probiontaria
Class Microbiontoidea
Order Aphanobiontidea
Order Chlamydozoidea
Class Bacterioidea
Class Spirochaetoidea
Phylum Flagellaria
Phylum Protophytaria
Phylum Protozoaria
Phylum Myxomycetaria
Subkingdom Metaphytodeae
Subkingdom Metazoodeae
Copeland (1938)
Copeland, H. F. The kingdoms of organisms. The Quarterly Review Of Biology Vol. 13, No. 4 (Dec., 1938), pp. 383-420, [12].
Monera
Protista
Plantae
Animalia
Barkley (1939)
Barkley, Fred A. (1939). Keys to the phyla of organisms. Missoula, Montana, [13].
Monera
Protista
Plantae
Animalia
Barkley (1949)
Barkley, Fred A. "Un esbozo de clasificación de los organismos." Revista de la Facultad Nacional de Agronomia, Universidad de Antioquia, Medellín. 10: 83–103, [14].
Mychota
Protista (Protobionta, Protoctista)
Euthallophyta
Rhodophyta
Chrysophyta
Pyrrophyta
Euglenophyta
Gonidiophyta
Charophyta
Phaeophyta
Myxophyta
Mycophyta
Protozoa
Sarcodina
Foraminifera
Actinopoda
Fungilli
Ciliata
Suctoria
Mesozoa
Parazoa
Porifera
Euplanta
Euanimalia
Treatise on Invertebrate Paleontology (1954–2005)
From Treatise on Invertebrate Paleontology, [15].
Protista
[part B/1.1, 2005:]
Charophyta
[part B/1.2:]
Dinoflagellatae
Chrysomonadida
Coccolithophorida
Diatomacea
[part C/2, 1964:]
Subphylum Sarcodina
Class Rhizopodea
Subclass Lobosia
Order Amoebida
Order Mycetozoida
Order Arcellinida ("thecamoebians")
Class Reticularea
Subclass Filosia
Order Aconchulinida
Order Gromida ("thecamoebians")
Subclass Granuloreticulosia
Order Athalamida
Order Foraminiferida
Order Reitlingerellida
Order Xenophyophorida
Order Labyrinthulida
Subclass Radiolaria
Subclass Heliozoia
Subclass Acantharia
[part D/3, 1954:]
Subphylum Sarcodina
Class Actinopoda
Subclass Heliozoa
Subclass Radiolaria
Subphylum Sporozoa
Subphylum Ciliophora
Suborder Tintinnina
Edmondson (1959)
Edmondson, W.T. (ed). 1959. Freshwater biology. 2nd ed. Wiley, New York, [16].
Protista
Bacteria
Fungi
Algae
Protozoa
Whittaker (1969)
From New Concepts of Kingdoms of Organisms, [17].
Kingdom Monera
Kingdom Protista
Phylum Euglenophyta
Phylum Chrysophyta
Phylum Pyrrophyta
Phylum Hyphochytridiomycota
Phylum Plasmodiophoromycota
Phylum Sporozoa
Phylum Cnidosporidia
Phylum Zoomastigina
Phylum Sarcodina
Phylum Ciliophora
Kingdom Plantae
Kingdom Fungi
Kingdom Animalia
Loeblich (1974)
Loeblich, A. R. (1974). Protistan Phylogeny as Indicated by the Fossil Record. Taxon 23 (2/3): 277–290, [18].
[p. 280]
Monera
Schizophyta
Cyanophyta
Protista
Aconta
Rhodophyta
Contophora
Chromophyta
Chlorophyta
Undifferentiated phytoplankton
Protozoa
Rhizopodea
Actinopodea
Ciliatea
[p. 282]
Schizophyta
Cyanophyta
[protists]
Rhodophyta
[unnamed]
Brown monad
Foraminiferida
Gromida
Arcellinida
Ciliatea
[unnamed]
Radiolaria
Heliozoia
[unnamed]
Bacillariophyceae
Xanthophyceae
Chrysophyceae
Haptophyceae
Dinophyceae
Phaeophyceae
[unnamed]
Green monad
Prasinophyceae
Euglenales
[unnamed]
Volvocales
Oedogoniales
Ulotrichales
Charales
Higher plants
[unnamed]
Chlorococcales
Zygnematales
Siphonocladales
Caulerpales
[unnamed]
Dasycladales
Receptaculitales
Whittaker & Margulis (1978)
Whittaker, R. H. & Margulis, L. (1978). Protist classification and the kingdoms of organisms. Biosystems 10, 3–18.
Superkingdom Prokaryota
I. Kingdom Monera
Superkingdom Eukaryota
II. Kingdom Protista or Protoctista
Branch Protophyta
Form-Superphylum Chromophyta or Chromobionta
Phylum Chrysophyta, s.s.
Phylum Bacillariophyta
Phylum Xanthophyta
Phylum Haptophyta
Phylum Eustigmatophyta
Phylum Dinoflagellata or Pyrrophyta, s.s.
Phylum Cryptophyta
(Phylum Phaeophyta)
Form-Superphylum Chlorophyta, s.l., or Chlorobionta
Phylum Chlorophyta, s.s.
Phylum Siphonophyta
Phylum Prasinophyta
Phylum Zygnematophyta or Gamophyta
Phylum Charophyta
Phylum Euglenophyta
(Superphylum Rhodophyta)
Branch Protomycota
Form-Superphylum Mastigomycota
Phylum Hyphochytridiomycota
Phylum Chytridiomycota
Phylum Oomycota
Form-Superphylum Gymnomycota
Phylum Plasmodiophoromycota
Phylum Labyrinthulomycota
Phylum Acrasiomycota
Phylum Myxomycota
Branch Protozoa
Form-Superphylum Sporozoa, s.l.
Phylum Apicomplexa or Sporozoa, s.s.
Phylum Cnidosporidia
Form-Superphylum Sarcodina, s.l.
Phylum Caryoblastea or Pelobiontida
Phylum Rhizopoda or Sarcodina s.s.
Phylum Actinopoda
Phylum Foraminifera
Form-Superphylum and Phylum Zoomastigina
Superphylum and Phylum Ciliophora
(Superphylum Agnotozoa)
(Superphylum Parazoa)
III. Kingdom Fungi
IV. Kingdom Animalia
V. Kingdom Plantae
[Note: "form-superphyla" or "form-phyla are “frankly polyphyletic groupings”.]
Cavalier-Smith (1981)
Cavalier-Smith, T. (1981). Eukaryote kingdoms: seven or nine?. Biosystems, 14(3), 461-481, [19].
Nine eukaryote kingdoms proposal [p. 462]
Superkingdom Eukaryota
Kingdom 1. Eufungi
Kingdom 2. Ciliofungi
Kingdom 3. Animalia
Kingdom 4. Biliphyta
Kingdom 5. Viridiplantae
Kingdom 6. Euglenozoa
Kingdom 7. Protozoa
Kingdom 8. Cryptophyta
Kingdom 9. Chromophyta
Five eukaryote kingdoms proposal [p. 476-477]
Superkingdom Eukaryota
Kingdom 1. Fungi (Ciliofungi + Eufungi)
Kingdom 2. Chromista (Cryptophyta + Chromophyta)
Kingdom 3. Plantae (Viridiplantae + Biliphyta)
Kingdom 4. Protista (Euglenozoa + Protozoa)
Kingdom 5. Animalia
Seven eukaryote kingdoms proposal [p. 478]
Superkingdom Eukaryota
Kingdom Fungi
Kingdom Viridiplantae
Kingdom Biliphyta
Kingdom Chromista
Kingdom Animalia
Kingdom Euglenozoa
Phylum Euglenozoa
Euglenida
Kinetoplastida
Kingdom Protozoa
Phylum Proterozoa (proteromonads, cyathobodonids, Opalinida)
Phylum Dinozoa (dinoflagellates)
Phylum Parabasalia (trichomonads and hypermastigids)
Phylum Metamonadina (retortomonads, diplomonads, and oxymonads)
Phylum Sporozoa (cregarines, coccidlans, and piroplasms)
Phylum Infusoria (Ciliophora)
Phylum Foraminifera
Phylum Sarcodina (amoebae, amoeboflagellates, slime moulds (Mycetozoa), Radiolaria, Heliozoa, Acantharia, Myxosporea, Microsporea)
Parker et al. (1982)
Parker, S. P. (ed.). 1982. Synopsis and classification of living organisms. 2 vols. McGraw-Hill, New York, [20], [21]. See Brands (1989-2005 ), [22]
Superkingdom Prokaryotae
Kingdom Virus
Kingdom Monera
Superkingdom Eukaryotae
Kingdom Plantae
Subkingdom Thallobionta
Division Rhodophycota
Division Chromophycota
Division Euglenophycota
Division Chlorophycota
Division Myxomycota
Division Eumycota
Subkingdom Embryobionta
Genus Echites
Kingdom Protista (Haeckel, 1866)
Phylum Euprotista [“containing the grat majority of protistans”]
Phylum Gymnomyxa
Subphylum Mycetozoa
Subphylum Plasmodiophorina
Subphylum Labyrinthulina
Kingdom Animalia 1758
Subkingdom Protozoa (Goldfuss,1818)
Phylum Sarcomastigophora (Honigberg & Balamuth,1963)
Phylum Labyrinthulata
Phylum Apicomplexa Levine, 1970
Phylum Microspora Sprague, 1977
Phylum Myxozoa Grassé, 1970
Phylum Ascetospora
Phylum Ciliophora Doflein, 1901
Subkingdom Phagocytellozoa
Phylum Placozoa Grell, 1971
Subkingdom Parazoa (Sollas,1884)
Phylum Porifera Grant, in Todd, 1836
Subkingdom Eumetazoa (Butschli,1910)
[Note: this classification is redundant for some ambiregnal protists. See Taylor et al. (1986), [23].]
Corliss (1984)
From The kingdom Protista and its 45 phyla [24].
Kingdom Protista Haeckel, 1866
Assemblage I. The rhizopods
Phylum Karyoblastea Margulis, 1974 (syns. Caryoblastea, Pelobiontida)
Phylum Amoebozoa Lühe, 1913
Phylum Acrasia Van Tieghem, 1880 (syn. Acrasiomycetes)
Phylum Eumycetozoa Zopf, 1885 (syns. Myxomycota p.p., Myxomycetes p.p.)
Phylum Plasmodiophorea Zopf, 1885
Phylum Granuloreticulosa De Saedeleer, 1934
Incertae sedis
Phylum Xenophyophora Schulze, 1904
Assemblage II. The mastigomycetes
Phylum Hyphochytridiomycota Sparrow, 1959 (syn. Hyphochytriomycetes)
Phylum Oomycota Winter, 1879 (syn. Oomycetes)
Incertae sedis:
Phylum Chytridiomycota Sparrow, 1959 (syn. Chytridiomycetes)
Genus Nephromyces (Saffo, 1981; Saffo & Nelson, 1983) ["assignable here or better in assemblage VIII, phylum Proteromonadea, below?"]
Assemblage III. The chlorobionts
Phylum Chlorophyta Pascher, 1914 (syn. Isokontae p.p.)
Phylum Prasinophyta Christensen, 1962 (syn. Prasinomonadea)
Phylum Conjugatophyta Engler, 1892 (syns. Akontae p.p., Gamophyta, Zygnematophyta)
Phylum Charophyta Rabenhorst, 1863
Incertae sedis:
Phylum Glaucophyta Bohlin, 1901 (syn. Glaucophyceae)
Assemblage IV. The euglenozoa
Phylum Euglenophyta Pascher, 1931 (syns. Euglenoidina, Euglenida)
Phylum Kinetoplastidea Honigberg, 1963 (syns. Bodonophyceae plus Trypanosomatophyceae)
Incertae sedis:
Pseudociliata Corliss and Lipscomb, 1982 (syn. Stephanopogonida)
Assemblage V. The rhodophytes
Phylum Rhodophyta Rabenhorst, 1863
Assemblage VI. The cryptophytes
Phylum Cryptophyta Pascher, 1914
Assemblage VII. The choanoflagellates
Phylum Choanoflagellata Kent, 1880 (syn. Craspedomonadophyceae)
Assemblage VIII. The chromobionts
Phylum Chrysophyta Pascher, 1914
Phylum Haptophyta Christensen, 1962 (syn. Prymnesiophyta)
Phylum Bacillariophyta Engler and Gild, 1924 (syn. Ditomea)
Phylum Xanthophyta Allorge in Fritsch, 1935 (syns. Heterokontae p.p., Tribophyceae)
Phylum Eustigmatophyta Hibberd and Leedale, 1970
Phylum Phaeophyta Kjellman, 1891 (syns. Fucophyceae, Melanophyceae)
Incertae sedis:
Phylum Proteromonadea Grassé in Grassé, 1952 (syns. Proterozoa p.p.; perhaps Protomastigida p.p. and Protomonadina p.p. auctt.)
Group Bicosoecidea Grassé and Deflandre in Grassé, 1952
Group Heterochloridea Pascher, 1912
Group Raphidophyceae Chadefaud, 1950 (syns. Chloromonadida, Chloromonadophyceae)
Assemblage IX. The labyrinthomorphs
Phylum Labyrinthulea Cienkowski, 1867
Phylum Thraustochytriacea Sparrow, 1943
Assemblage X. The polymastigotes
Phylum Metamonadea Grassé in Grassé, 1952 (syns. Hexamitophyceae plus Trichomonadophyceae p.p.)
Phylum Parabasalia Honigberg, 1973 (syn. Trichomonadophyceae p.p.)
Assemblage XI. The paraflagellates
Phylum Opalinata Wenyon, 1926
Assemblage XII. The actinopods
Phylum Heliozoa Haeckel, 1866
Phylum Taxopoda Fol, 1883
Phylum Acantharia Haeckel, 1879
Phylum Polycystina Ehrenberg, 1839 (syn. 'Radiolaria' auctt., p.p.)
Phylum Phaeodaria Haeckel, 1879 (syn. 'Radiolaria' auctt., p.p.)
Assemblage XIII. The dinoflagellates
Phylum Peridinea Ehrenberg, 1830 (syns. Desmokontae p.p., Dinoflagellata s.s., Dinophyta s.s., Pyrrhophyta s.s., Mesokaryota s.s., Dinophyceae plus Desmophyceae minus Syndiniophyceae)
Phylum Syndinea Chatton, 1920 (syns. Syndiniales, Syndiniophyceae)
Incertae sedis:
Ebriidea Deflandre in Grassé, 1952 (syns. Ebriacea, Ebriales, Ebriophyceae)
Ellobiophyceae Loeblich III, 1970 (syn. Ellobiopsidea)
Acritarcha Evitt, 1963
Assemblage XIV. The ciliates
Phylum Ciliophora Doflein, 1901
Assemblage XV. The sporozoa
Phylum Sporozoa Leuckart, 1879 (syn. Apicomplexa)
Incertae sedis:
Perkinsida Levine, 1978
Assemblage XVI. The microsporidia
Phylum Microsporidia Balbiani, 1882 (syn. Microspora)
Assemblage XVII. The haplosporidia
Phylum Haplosporidia Caullery and Mesnil, 1899 (syns. Aplosporidia, Ascetospora p.p., Balanosporida)
Assemblage XVIII. The myxosporidia
Phylum Myxosporidia Bütschli, 1881 (syns. Myxospora, Myxozoa)
Incertae sedis:
Actinomyxidea Štolc, 1899
Marteiliidea Desportes and Ginsburger-Vogel, 1977 (syn. Occlusosporida)
Paramyxidea Chatton, 1911
Hausmann et al. (1985)
Hausmann, K., Mulisch, M. & Patterson, D. J. 1985. Protozoologie. Thieme Verlag: Stuttgart, [25].
Protisten
Stamm Sarcomastigophora
Stamm Labyrinthomorpha
Stamm Apicomplexa
Stamm Microspora
Stamm Ascetospora
Stamm Myxozoa
Stamm Ciliophora
de Puytorac et al. (1987)
From Puytorac, P. de, Grain, J., Mignot, J.P. Précis de protistologie. Lubrecht & Cramer Ltd, 1987. 581 p., [26], [27], [28]. See Fernández-Galiano, 1990, [29].
Protista
Phylum Karyoblasta
Phylum Rhizopoda
Phylum Labyrinthomorpha
Phylum Actinopoda
Phylum Dinoflagellata
Phylum Mastigophora
Phylum Opalinata
Phylum Pseudociliata
Phylum Sporozoa
Phylum Microspora
Phylum Myxozoa
Phylum Ascetospora
Phylum Ciliophora
Patterson (1988)
Patterson, D. J. 1988. The evolution of Protozoa. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, 83 (suppl. 1): 580–600, [30].
[Fig. 1. Hypothetical sequence of derivation of major groups]
Methanogens, Halobacteria, Eubacteria
Sulphur termophiles
[eukaryotes]
Microspora
Pelobiontida
Cristidiscoid protists
Tubulocristate protists
Lamellicristate protists
Animals, Eumycota, Plants
[Table 1. Major groups of protists distinguished by ultrastructural identity]
Microspora
Pelobiontida
Mastigamoebidae
Pelomyxidae
Acantharea sedis mutabilis
Apicomplexa sedis mutabilis
Perkinsidae
Sporozoea
Aulacomonas sedis mutabilis
Apusomonas sedis mutabilis
Centrohelida sedis mutabilis
Cercomonas sedis mutabilis
Chlorarachnion sedis mutabilis
Choanozoa sedis mutabilis
Choanoflagellida Porifera
Chytridiomycetes sedis mutabilis
Ciliophora sedis mutabilis
Colponema sedis mutabilis
Cristidiscoidida sedis mutabilis
Nucleariidae
Pompholyxophryidae
Cryptophyta sedis mutabilis
Desmothoracidae sedis mutabilis
Dimorphidae sedis mutabilis
Dinophyta sedis mutabilis
Ebriida sedis mutabilis
Eumycetozoa sedis mutabilis
Protostelidae
Myxomycetozoa
Gymnosphaerida sedis mutabilis
Haplospora sedis mutabilis
Lobosea sedis mutabilis
Centramoebidae sedis mutabilis
Acanthopodina sedis mutabilis
Dictyosteliidae sedis mutabilis
Stereomyxidae sedis mutabilis
Euamoebida sedis mutabilis
Himatismenida sedis mutabilis
Leptomyxida sedis mutabilis
Testacealobosea sedis mutabilis
Metamonadida sedis mutabilis
Retortomonadida
Diplomonadida
?Myxozoa? sedis mutabilis
Oxymonadida sedis mutabilis
Parabasalia sedis mutabilis
Monocercomonadidae
Trichomonadida
Hypermastigida
?Paramyxea? sedis mutabilis
Phaeodarea sedis mutabilis
Phalansterium sedis mutabilis
Plasmodiophoromycetes sedis mutabilis
Polycystinea sedis mutabilis
Prodiscea sedis mutabilis
Heterolobosea sedis mutabilis
Schizopyrenida
Acrasida
Stephanopogon sedis mutabilis
Euglenozoa sedis mutabilis
Kinetoplastida
Plicostomatida
Diplonema
Euglenida
Prymnesiophyta sedis mutabilis
Pseudodendromonadidae sedis mutabilis
Pseudodendromonas
Cyathobodo
Rhodophyta sedis mutabilis
Spongomonadidae sedis mutabilis
Spongomonas
Rhipidodendron
Stramentopila sedis mutabilis
Actinomonadida sedis mutabilis
Pedinellales
Actinophryida
Bicosoecida sedis mutabilis
Pseudobodonidae
Bicosoecidae
Chrysophyta sedis mutabilis
Bacillariophyceae sedis mutabilis
Chrysophyceae sedis mutabilis
Ochromonadales
Sarcinochrysidales
Phaeophyta
Eustigmatophyta sedis mutabilis
Microglena sedis mutabilis
Paraphysomonadaceae sedis mutabilis
Pelagococcus sedis mutabilis
Raphidophyceae sedis gutabilis
Rhizochromulina sedis mutabilis
Stylococcaceae sedis mutabilis
Synuraceae sedis mutabilis
Xanthophyta sedis mutabilis
Granuloreticulosea sedis mutabilis
Labyrinthulacea sedis mutabilis
Thraustochytrididae sedis mutabilis
Diplophrys sedis mutabilis
Labyrithulidae sedis mutabilis
Sloomycota sedis mutabilis
Oomycetes sensu stricto
Hyphochytridiomycetes
Slopalinida sedis mutabilis
Proteromonadidae
Opalinidae
Thaumatomastixidae sedis mutabilis
Thaumatomastix
Protaspis
Vampyrellida sedis mutabilis
Arachnula
Vampyrella
Viridiplantae sedis mutabilis
Prasinophyceae
Chlorophyceae
Xenophyophorea sedis mutabilis
Sleigh (1989)
Sleigh, M. (1989). Protozoa and Other Protists. 2nd ed. Edward Arnold, London, [31], [32].
"four sets of protistan phyla"
flagellates and related protists
Phylum Dinophyta
?Order Ebriida
?Order Ellobiopsida
Phylum Parabasalia
Order Trichomonadida
Order Hypermastigida
Phylum Metamonada
Class Anaxostylea
Order Retortamonadida
Order Diplomonadida
Class Axostylea
Order Oxymonadida
Phylum Kinetoplasta
Order Bodonida
Order Trypanosomatida
Phylum Euglenophyta
?Stephanopogon, Hemimastix
Phylum Cryptophyta
Phylum Opalinata (Slopalinata)
Order Opalinida
?Order Proteromonadida
Phylum Heterokonta
Class Chrysophyceae
Class Synurophyceae
Class Bacillariophyceae
Class Phaeophyceae
Class Xanthophyceae (Tribophyceae)
Class Eustigmatophycae
Class Oomycotea
Class Hyphochytridiomycotea
Class Raphidophyceae
Class Labyrinthulea
Class Thraustochytridea
?Class Bicoecida (Bicosoecida)
?some helioflagellates (e.g., Actinomonas, Pteridomonas, Ciliophrys)
Phylum Chlorophyta
Class Prasinophyceae
Class Chlorophyceae
Class Oedogoniophyceae
Class Ulvaphyceae
Class Conjugatophyceae
Class Charophyceae
Phylum Haptophyta (Prymnesiophyta)
Phylum Chytridiomycota
Phylum Choanoflagellata
Phylum Rhodophyta
amoeboid protists
Phylum Rhizopoda
Class Karyoblastea (Pelobiontea)
Class Helerolobosea
Class Lobosea
Class Eumycetozoea
Class Plasmodiophorea
Class Filosea
Class Granuloreticulosea
Class Xenophyophorea
Phylum Actinopoda
Class Heliozoea
Class Polycystinea
Class Phaeodarea
Class Acantharea
ciliates
Phylum Ciliophora (according to Puytorac et al., 1974, Corliss, 1979, Levine et al., 1980)
Class Kinetofragminophorea
Class Oligohymenophorea
Class Polyhymenophorea
Phylum Ciliophora (according to Small and Lynn, 1985)
Subphylm Postciliodesmatophora
Subphylm Rhabdophora
Subphylm Cyrtophora
parasitic protists
Phylum Sporozoa (= Apicomplexa)
Phyulum Microsporidia (= Microspora)
Phyulum Myxosporidia (= Myxospora, = Myxozoa)
Phyulum Haplosporidia (= Ascetospora in part)
Karpov (1990)
Карпов С.А. (1990). Система протистов. Омск: Изд-во Омского пед, [33].
Karpov S.A. (1990). System of Protists. Mezhvuzovskaia tipograf. Omsk: OmPi (in Russian, with English summary).
Kingdom Protista
1. Superphylum Rhodophyta
2. Superphylum Dinomorpha
3. Superphylum Cryptophyta
4. Superphylum Euglenozoa
5. Superphylum Choanomastigota
6. Superphylum Polymastigota
7. Superphylum Sporozoa
8. Superphylum Ciliophora
9. Superphylum Chromophyta
10. Superphylum Chytridia
11. Superphylum Plasmodiophora
12. Superphylum Mycetozoa
13. Superphylum Rhizopoda
14. Superphylum Actinopoda
15. Superphylum Myxospora
16. Superphylum Glaucophyta
Protista incertae sedis: Apusomonadea, Thaumatomonadea, Xenophyophorea, Colponema loxodes, Massisteria marina, Jacoba libera, Aulacomonas submarina
Alimov et al. (2000, 2007)
Alimov, A. F. ed. (А. Ф. Алимов). 2000. Protista 1: Handbook on zoology (Протисты 1: руководство по зоологии). St. Petersburg: Nauka, 2000, 679 pp. (in Russian, with English summaries), [34].
Alimov, A. F. ed. (А. Ф. Алимов). 2007. Protista 2: Handbook on zoology. (Протисты 2: руководство по зоологии). St. Petersburg: Nauka, 2007, 1141 pp. (in Russian, with English summaries), [35].
[Vol. 1, p. 137:]
Protists
Phylum Cryptophyta Pascher, 1914
Class Cryptophyceae Senn, 1900
Phylum Euglenozoa Cavalier-Smith, 1978
Class Euglenoidea Bütschli, 1884
Class Kinetoplastidea Honigberg et al., 1963
Phylum Chrysophyta Pascher, 1914
Class Chrysophyceae Pascher, 1914 (incl. Order Bicosoecales (Grassé) Karpov, 1998)
Class Synurophyceae Andersen, 1987
Class Pelagophyceae Andersen & Saunders, 1993
Phylum Haptophyta Christensen, 1962
Phylum Raphidophyta Chadefaud, 1950
Phylum Saprolegnia Zerov, 1972
Class Saprolegnea (= Oomycetes) Zerov, 1972
Class Labyrinthomorphea Page, 1979
Order Labyrinthulida Cienkowski, 1867
Order Thraustochytrida Sparrow, 1943
Phylum Opalinata Wenyon, 1926
Class Proteromonadea Grassé, 1952
Class Opalinatea Wenyon, 1926
Chromista incertae sedis
Spongomonada (Hibberd) Karpov, 1990
Pseudodendromonada Hibberd, 1985
Phylum Choanomonada Kent, 1880
Class Choanomonadea Kent, 1880
Order Monosigida Kent, 1880
Order Salpingoecida Kent, 1880
Order Acanthoecida Norris, 1965
Phylum Polymastigota Bütschli, 1884
Class Diplomonadea Wenyon, 1926
Order Retortamonadida Grassé, 1952
Order Diplomonadida Wenyon, 1926
Class Oxymonadea Grassé, 1952
Order Oxymonadida Grassé, 1952
Class Parabasalea Honigberg, 1973
Order Trichomonadida Kirby, 1947
Order Hypermastigida Grassi & Foa, 1911
Phylum Plasmodiophora Zopf, 1884
Phylum Mycetozoa de Bary, 1859
Class Cercomonadea Mylnikov, 1986
Class Eumycetozoa Zopf, 1884
Subclass Protostelia Olive, 1970
Subclass Dictyostelia Olive, 1970
Subclass Myxogastria Olive, 1970
Mycetozoa incertae sedis: Hyperamoeba flagellata Alexeieff, 1926
Phylum Rhizopoda Siebold, 1845
Class Lobosea Carpenter, 1861
Subclass Gymnamoebia Haeckel, 1862
Order Euamoebida (Lepsi, 1960) Page, 1987
Order Leptomyxida (Pusard & Pons, 1976) Page, 1987
Order Loboreticulatida Page, 1987
Order Acanthopodida Page, 1976
Subclass Testacealobosia de Saedeleer, 1934
Order Arcellinida Kent, 1880
Order Himatismenida Page, 1987
Order Trichosida Moebius, 1889
Class Heterolobosea Page & Blanton, 1985
Order Schizopyrenida Singh, 1952
Order Acrasida (Schroeter, 1886) Page & Blanton, 1985
Class Filosea Leidy, 1879
Subclass Aconchulinia de Saedeleer, 1934
Order Cristidiscoidida Page, 1987
Family Nucleariidae Cann & Page, 1979
Family Pompholyxophrydae Page, 1987
Order Cristivesiculatida Page, 1987
Family Vampyrellidae Zopf, 1885
Family Arachnulidae Page, 1987
Subclass Testaceafilosia de Saedeleer, 1934
Order Gromiida Claparède & Lachmann, 1859
Class Peloflagellatea (= Caryoblastea) Goodkov & Seravin, 1991
Order Pelobiontida Page, 1976
Class Xenophyophorea Schulze, 1904
Order Psamminida Poche, 1913
Order Stannomida Tendal, 1972
Rhizopoda incertae sedis
Athalamida Haeckel, 1862
Monothalamida Haeckel, 1862
Komokiida Kamenskaya, 1992
Blastocystida Zyerdt, 1988 ememd. Belova, 1992
Phylum Foraminifera d'Orbigny, 1826
[Vol. 2:]
Alveolata Cavalier-Smith, 1991
Phylum Sporozoa Leuckart, 1879
Phylum Ciliophora Doflein, 1901
Phylum Dinozoa (3)
Phylum Microsporidia Balbiani, 1882
Phylum Myxozoa Grassé, 1970
Class Myxosporea Bütschli, 1881
Heliozoa (3)
Radiolaria (3)
Pedinellomorpha (3)
[Notes:
the groups with (3) are treated in vol. 3;
some groups of protists not traditional for protozoologists (e.g., Xantophyceae, Bacillariophyceae, Hyphochytridia) were not treated in the series.]
Pugachev et al. (2011)
Pugachev, O. N. ed. (О.Н. Пугачев). 2011. Protista 3: Guide-book on zoology. (Протисты 3: руководство по зоологии). St. Petersburg: KMK Scientific Press, 474 pp. (in Russian, with English summaries), [36], [37].
Protists (Eukaryota)
Rhizaria
Foraminiferida (1)
Xenophyophorea (1)
Komokiida (1)
Polycystina Ehrenberg, 1838 ("radiolarians") (3)
Acantharia Müller, 1885 ("radiolarians") (3)
Taxopodida Foll, 1883 ("heliozoans") (3)
Cercozoa
Phaeodaria Haeckel, 1879 ("radiolarians") (3)
Euglyphida (1)
Thaumatomonadida (Shirkina) Karpov, 1990 (3)
Spongomonadida (1)
Cryomonadida Cavalier-Smith, 1993 (3)
Pansomonadida Vickerman, Appleton, Clarke & Moreira, 2005 (3)
Cercomonadida (1)
Desmothoracida Hertwig & Lesser, 1874 ("heliozoans") (3)
Dimorphida Siemensma, 1991 ("heliozoans") (3)
Chlorarachnida
Paramyxea Chatton, 1911 (3)
Plasmodiophorea (1)
Haplosporidia Caullery & Mesnil, 1899 (3)
Gromiida (1)
Alveolata
Ciliophora (2)
Sporozoa (Apicomplexa) (2)
Colpodellea (2)
Dinoflagellata (Bütschli) Fensome et al., 1993 (3)
Heterokonta
Actinophryida Hartmann, 1913 ("heliozoans") (3)
Bicosoecida (1)
Pseudodendromonadida (1)
Blastocystida (1)
Opalinata (1)
Labyrinthomorpha (1)
Oomycetes
Chrysophyta (1)
Pedinellida Zimmermann, Moestrup & Hallfors, 1984 ("heliozoans") (3)
Raphidophyta (1)
Phaeophyta
Bacillariophyta
Hacrobia
Haptophyta (1)
Centrohelida Kühn, 1926 ("heliozoans") (3)
Kathablepharida Okamoto & Inouye, 2005 (3)
Cryptophyta (1)
Archaeplastida
Rhodophyta
Viridiplantae
Charophyta
Embryophyta
Chlorophyta
Excavata
Discicristata
Heterolobosea (1)
Acrasida
Schyzopyrenida
Euglenoidea (1)
Kinetoplastidea (1)
Oximonadea (1)
Diplomonadea (1)
Parabasalia
Hypermastigida (1)
Trichomonadida (1)
Amoebozoa
Pelobiontida (Page, 1976) Griffin, 1988 (1; 3)
Gymnamoebia (1)
Testacealobosia (1)
Myxomycetes (1)
Protostelia (1)
Dictyostelia (1)
Myxogastria (1)
Opisthokonta
Metazoa
Myxozoa (2)
Choanoflagellata (1)
Ichthyosporea Cavalier-Smith, 1998 (3)
Rotosphaerida Rainer, 1968 ("heliozoans") (3)
Nucleariida (1)
Fungi
“Chytridiomycetes”
“Zygomycetes”
Microsporidia (2)
Ascomycetes
Basidiomycetes
Eukaryota incertae sedis
Gymnosphaerida Poche, 1913 ("heliozoans") (3)
Apusozoa (Cavalier-Smith, 2002) Cavalier-Smith, 2010 (3)
Apusomonadida Karpov & Mylnikov, 1989 (3)
Ancyromonadida Cavalier-Smith, 1997 (3)
Micronucleariida Cavalier-Smith, 2008 (3)
Hemimastigophora Foissner, Blatterer & Foissner, 1988 (3)
[Note: numbers indicate volume in which the groups were treated.]
Simpson et al. (2017)
Simpson, A. G. B., Slamovits, C. H. & Archibald, J. M., (2017). Protist diversity and eukaryote phylogeny. In: Archibald, J.M., Simpson, A.G.B., Slamovits, C. (Eds.). Handbook of the Protists (2nd edition of the Handbook of Protoctista by Margulis et al.). Springer, continuously updated edition, 2016-2017, 43 chapters, [38]. [2012 version flyer, not published: [39].]
"protists"
Archaeplastida
Glaucophyta
Rhodophyta
Chlorophyta (*)
"streptophytes"
Mesostigma
Chlorokybophyceae
Klebsormidiophyceae
Charophyceae
Coleochaetophyceae
Zygnematophyta
Embryophyta (*) [not protist]
Sar: Stramenopiles
Platysulcus (*)
Labyrinthulomycota
Opalinata
Nanomonadea (*)
Placidida (*)
Bicosoecida (*)
Rictus (*)
Cantina (*)
Developayella (*)
Pirsoniida (*)
Hyphochytriomycota
Oomycota
"ochrophytes"
Actinophryida [not published]
Bolidophyceae (*)
Bacillariophyta
Pelagophyceae (*)
Dictyochophyceae (*)
Pinguiophyceae (*)
Eustigmatophyta [see Eustigmatophyceae]
Picophagea (*)
Chrysophyta
Raphidophyceae
Chrysomerophyceae (*)
Phaeophyta
Phaeothamniophyceae (*)
Xanthophyceae
Sar: Alveolata
Ciliophora
Palustrimonas (*)
Acavomonas (*)
Colponema (*)
"chrompodellids"
Colpodellida
Chromerida
Apicomplexa
Perkinsozoa (*)
Psammosa
Dinoflagellata
Sar: Rhizaria
Filosa (*)
Phaeodaria
Clathrulinidae
Chlorarachniophyta
other (*): Cercomonadida, Glissomonadida, Thaumatomonadida, Ebriida, Pseudopirsonia, Euglyphida, etc.
Tremula (*)
Vampyrellidae (*)
Phytomyxea
Paradinium (*)
Mikrocytida (*)
Haplosporidia
Paramyxida
Filoreta (*)
Gromia (*)
Retaria
Sticholonche [not published]
Acantharea (*) ["radiolarians"]
Polycystinea ["radiolarians"]
Foraminifera (*)
[other Archaeplastida- and Sar-related lineages]
Picozoa (*)
Cryptista
Cryptophyta
Kathablepharida (*)
Palpitomonas (*)
Microheliella (*)
Centrohelida ["heliozoans"]
"rappemonads" (*)
Haptophyta (Prymnesiophyta)
Telonemida (*)
Discoba ["excavates"?]
Jakobida
Tsukubamonas (*)
Discicristata
Heterolobosea
Euglenozoa
Euglenida
Diplonemea (*)
Kinetoplastea
Metamonada ["excavates"?]
Preaxostyla
Parabasalia
Fornicata
Retortamonadida [polyphyletic]
Carpediemonas-like organisms (CLO) [polyphyletic]: Carpediemonas, Ergobibamus, Aduncisulcus, Hicanonectes, Kipferlia, Dysnectes
Caviomonadidae
Diplomonadida
Amorphea: Amoebozoa
Tubulinea ["lobose"]
Discosea
Longamoebia
Centramoebida ["protosteloid"]
[other] ["lobose"]
Flabellinia
Pellitida ["protosteloid"]
Vannellida ["protosteloid"]
[other] ["lobose"]
Cutosea ["lobose"]
Variosea ["protosteloid"]
Archamoebae
Dictyostelia
Protosporangiida ["protosteloid"]
Myxogastria ["myxomycetes"]
Amorphea: Obazoa
Breviatea
Apusomonadida
Opisthokonta
Nucleariidae (*)
Fonticula (*)
Aphelida (*)
Cryptomycota (Rozellida) (*)
Microsporidia
Neocallimastigomycota
Chytridiomycota
Blastocladiomycota
other Fungi (*) [not protist]
Corallochytrium (*)
Ichthyosporea (Mesomycetozoea) (*)
Filasterea (*)
Choanoflagellata [see Choanoflagellatea]
Metazoa (*) [not protist]
[other lineages]
Malawimonadidae ["excavates"?]
Ancyromonadida (Planomonadida)
Mantamonas (*)
Collodictyonidae (*) ["diphylleids"]
Rigidifilida (*)
Hemimastigophora (*)
Heliomonadida (Dimorphida) ["heliozoans"]
Gymnosphaerida ["heliozoans"]
[(*): groups not covered in the Handbook]
See also
Eukaryota
Infusoria
Protobionta
Protoctista
Protozoa
References
Bankov, N., Todorov, M. & Ganeva, A. 2018. Checklist of Sphagnum-dwelling testate amoebae in Bulgaria. Biodiversity Data Journal 6: e25295. DOI: 10.3897/BDJ.6.e25295. Reference page.
Thomas Cavalier-Smith: Protist phylogeny and the high-level classification of Protozoa, Europ. J. Protistol. 39, 338-348 (2003).
David J. Patterson: The diversity of eukaryotes, American Naturalist 154, S96-S124 (1999).
Vernacular names
Afrikaans: Protiste
Alemannisch: Protischte
العربية: طلائعيات
asturianu: Protista
অসমীয়া: প্ৰটিষ্টা
azərbaycanca: İbtidailər
Boarisch: Prótisten
башҡортса: Протистар
беларуская (тарашкевіца): Пратысты
беларуская: Пратысты
български: Протиста
বাংলা: প্রোটিস্ট
bosanski: Protisti
català: Protist
کوردی: شانشینی پێشەنگییەکان
corsu: protisti
čeština: Prvoci / Protisté
Cymraeg: Protosoa
dansk: Protozo / Protister / Protist
Deutsch: Einzeller / Protozoen
Zazaki: Protista
Ελληνικά: Πρώτιστα
English: Protozoa / Protophyta / Protoctista / Protist
Esperanto: Protistoj
español: Protozoo, Protista
eesti: Protistid, Algloomad
euskara: Protista
فارسی: تکیاختگان
suomi: Alkueliöt
Nordfriisk: Uurdiarten
français: Protistes
עברית: פרוטיסטים
हिन्दी: प्रोटिस्ट
hrvatski: Protisti
Kreyòl ayisyen: Pwotis
magyar: Véglények, protiszták
հայերեն: Միաբջիջներ, Պրոտոզոններ, Պրոտոզոաներ
interlingua: Protistas
Bahasa Indonesia: Protista
Ido: Protisto
íslenska: Frumdýr
italiano: Protisti
日本語: 原生生物
ქართული: პროტისტები
қазақша: Споралылар
ភាសាខ្មែរ: បឋមត្ថិកសត្វ
한국어: 원생생물
Lëtzebuergesch: Protoctista
lietuvių: Protistai
latviešu: protisti
македонски: Протисти
മലയാളം: പ്രോട്ടിസ്റ്റ
मराठी: प्रोटिस्टा
Bahasa Melayu: Protis
Nederlands: Protisten
norsk nynorsk: Protistar
norsk: Protister
occitan: Protista
ଓଡ଼ିଆ: ପ୍ରୋଟିଷ୍ଟା
polski: Protisty
پنجابی: پروٹسٹ
português: Protista
Runa Simi: Ch'ulla kawsaykuq
română: Protiste
русский: Протисты / Простейшие
саха тыла: Протистар
සිංහල: ප්රෝටිස්ටා රාජධානිය
slovenčina: Prvoky
slovenščina: Protisti
svenska: Urdjur / Protozoer / Protister
தமிழ்: அதிநுண்ணுயிரி
తెలుగు: ప్రోటిస్టా
ไทย: โปรติสต์
lea faka-Tonga: Meʻamoʻuimuʻa
Türkçe: Protista
українська: Найпростіші
اردو: اولانیات
oʻzbekcha / ўзбекча: Protistlar
vèneto: Protista
vepsän kel’: Protistad
Tiếng Việt: Sinh vật nguyên sinh
ייִדיש: פראטיסטן
粵語: 原生生物
中文: 原生生物
A protist (/ˈproʊtɪst/ PROH-tist) or protoctist is any eukaryotic organism that is not an animal, land plant, or fungus. Protists do not form a natural group, or clade, but are a polyphyletic grouping of several independent clades that evolved from the last eukaryotic common ancestor.
Protists were historically regarded as a separate taxonomic kingdom known as Protista or Protoctista. With the advent of phylogenetic analysis and electron microscopy studies, the use of Protista as a formal taxon was gradually abandoned. In modern classifications, protists are spread across several eukaryotic clades called supergroups, such as Archaeplastida (photoautotrophs that includes land plants), SAR, Obazoa (which includes fungi and animals), Amoebozoa and Excavata.
Protists represent an extremely large genetic and ecological diversity in all environments, including extreme habitats. Their diversity, larger than for all other eukaryotes, has only been discovered in recent decades through the study of environmental DNA and is still in the process of being fully described. They are present in all ecosystems as important components of the biogeochemical cycles and trophic webs. They exist abundantly and ubiquitously in a variety of forms that evolved multiple times independently, such as free-living algae, amoebae and slime moulds, or as important parasites. Together, they compose an amount of biomass that doubles that of animals. They exhibit varied types of nutrition (such as phototrophy, phagotrophy or osmotrophy), sometimes combining them (in mixotrophy). They present unique adaptations not present in multicellular animals, fungi or land plants. The study of protists is termed protistology.
Definition
There is not a single accepted definition of what protists are. As a paraphyletic assemblage of diverse biological groups, they have historically been regarded as a catch-all taxon that includes any eukaryotic organism (i.e., living beings whose cells possess a nucleus) that is not an animal, a land plant or a dikaryon fungus. Because of this definition by exclusion, protists encompass almost all of the broad spectrum of biological characteristics expected in eukaryotes.[3]
They are generally unicellular, microscopic eukaryotes. Some species can be purely phototrophic (generally called algae), or purely heterotrophic (traditionally called protozoa), but there is a wide range of mixotrophic protists which exhibit both phagotrophy and phototrophy together.[3] They have different life cycles, trophic levels, modes of locomotion, and cellular structures.[4][5] Some protists can be pathogens.[6]
Examples of basic protist forms that do not represent evolutionary cohesive lineages include:[7]
Algae, which are photosynthetic protists. Traditionally called "protophyta", they are found within most of the big evolutionary lineages or supergroups, intermingled with heterotrophic protists which are traditionally called "protozoa".[8] There are many multicellular and colonial examples of algae, including kelp, red algae, some types of diatoms, and some lineages of green algae.
Flagellates, which bear eukaryotic flagella. They are found in all lineages, reflecting that the common ancestor of all living eukaryotes was a flagellated heterotroph.
Amoebae, which usually lack flagella but move through changes in the shape and motion of their protoplasm[9] to produce pseudopodia. They have evolved independently several times, leading to major radiations of these lifeforms. Many lineages lack a solid shape ("naked amoebae"). Some of them have special forms, such as the "heliozoa", amoebae with microtubule-supported pseudopodia radiating from the cell, with at least three independent origins. Others, referred to as "testate amoebae", grow a shell around the cell made from organic or inorganic material.
Slime molds, which are amoebae capable of producing stalked reproductive structures that bear spores, often through aggregative multicellularity (numerous amoebae aggregating together). This type of multicellularity has evolved at least seven times among protists.[10]
Fungus-like protists, which can produce hyphae-like structures and are often saprophytic. They have evolved multiple times, often very distantly from true fungi. For example, the oomycetes (water molds) or the myxomycetes.
Parasitic protists, such as Plasmodium falciparum, the cause of malaria.[11]
The names of some protists (called ambiregnal protists), because of their mixture of traits similar to both animals and plants or fungi (e.g. slime molds and flagellated algae like euglenids), have been published under either or both of the ICN and the ICZN codes.[12][13]
Classification
Phylogenomic tree of eukaryotes, as regarded in 2020. Supergroups are in color.
Further information: Taxonomy of Protista and Eukaryote § Phylogeny
The evolutionary relationships of protists have been explained through molecular phylogenetics, the sequencing of entire genomes and transcriptomes, and electron microscopy studies of the flagellar apparatus and cytoskeleton. New major lineages of protists and novel biodiversity continue to be discovered, resulting in dramatic changes to the eukaryotic tree of life. The newest classification systems of eukaryotes, revised in 2019, do not recognize the formal taxonomic ranks (kingdom, phylum, class, order...) and instead only recognize clades of related organisms, making the classification more stable in the long term and easier to update. In this new cladistic scheme, the protists are divided into various wide branches informally named supergroups:[7][1]
Archaeplastida[a] — consists of groups that have evolved from a photosynthetic common ancestor that obtained chloroplasts directly through a single event of endosymbiosis with a cyanobacterium:
Picozoa (1 species), non-photosynthetic predators.[15]
Glaucophyta (26 species), unicellular algae found in freshwater and terrestrial environments.[16]
Rhodophyta (5,000–6,000 species), mostly multicellular marine algae that lost chlorophyll and only harvest light energy through phycobiliproteins.[16]
Rhodelphidia (2 species), predators with non-photosynthetic plastid.[17]
Viridiplantae or Chloroplastida, containing both green algae and land plants which are not protists. The green algae comprise many lineages of varying diversity, such as Chlorophyta (7,000), Prasinodermophyta (10), Zygnematophyceae (4,000), Charophyceae (877), Klebsormidiophyceae (48) or Coleochaetophyceae (36).[7]
Sar, SAR or Harosa – a clade of three highly diverse lineages exclusively containing protists.
Stramenopiles is a wide clade of photosynthetic and heterotrophic organisms that evolved from a common ancestor with hairs in one of their two flagella. The photosynthetic stramenopiles, called Ochrophyta, are a monophyletic group that acquired chloroplasts from secondary endosymbiosis with a red alga. Among these, the best known are: the unicellular or colonial Bacillariophyta (>60,000 species),[18] known as diatoms; the filamentous or genuinely multicellular Phaeophyta (2,000 species),[19] known as brown algae; and the Chrysomonadea (>1,200 species). The heterotrophic stramenopiles are more diverse in forms, ranging from fungi-like organisms such as the Hyphochytrea, Oomycota and Labyrinthulea, to various kinds of protozoa such as the flagellates Opalinata and Bicosoecida.[7]
Alveolata contains three of the most well-known groups of protists: Apicomplexa, a parasitic group with species harmful to humans and animals; Dinoflagellata, an ecologically important group as a main component of the marine microplankton and a main cause of algal blooms; and Ciliophora (4,500 species),[20] the extremely diverse and well-studied group of mostly free-living heterotrophs known as ciliates.[7]
Rhizaria is a morphologically diverse lineage mostly comprising heterotrophic amoebae, flagellates and amoeboflagellates, and some unusual algae (Chlorarachniophyta) and spore-forming parasites. The most familiar rhizarians are Foraminifera and Radiolaria, groups of large and abundant marine amoebae, many of them macroscopic. Much of the rhizarian diversity lies within the phylum Cercozoa, filled with free-living flagellates which usually have pseudopodia, as well as Phaeodaria, a group previously considered radiolarian. Other groups comprise various amoebae like Vampyrellida or are important parasites like Phytomyxea, Paramyxida or Haplosporida.[7]
Haptista — includes the Haptophyta algae and the heterotrophic Centrohelida, which are "heliozoan"-type amoebae.[7]
Cryptista — closely related to Archaeplastida, it includes the Cryptophyta algae, with a plastid of red algal origin, and two obscure relatives with two flagella, katablepharids and Palpitomonas.[7]
Discoba — includes many lineages previously grouped under the paraphyletic "Excavata": the Jakobida, flagellates with bacterial-like mitochondrial genomes; Tsukubamonas, a free-living flagellate; and the Discicristata clade, which unites well-known phyla Heterolobosea and Euglenozoa. Heterolobosea includes amoebae, flagellates and amoeboflagellates with complex life cycles, and the unusual Acrasida, a group of slime molds. Euglenozoa encompasses a clade of algae with chloroplasts of green algal origin and many groups of anaerobic, parasitic or free-living heterotrophs.[7]
Metamonada — a clade of completely anaerobic protozoa, primarily flagellates. Some are gut symbionts of animals, others are free-living (for example, Paratrimastix pyriformis), and others are well-known parasites (for example, Giardia lamblia).[7]
Amorphea — unites two huge clades:
Amoebozoa (2,400 species) is a large group of heterotrophic protists, mostly amoebae. Many lineages are slime molds that produce spore-releasing fruiting bodies, such as Myxogastria, Dictyostelia and Protosporangiida, and are often studied by mycologists. Within the non-fruiting amoebae, the Tubulinea contain many naked amoebae (such as Amoeba itself) and a well-studied order of testate amoebae known as Arcellinida. Other non-fruiting amoebozoans are Variosea, Discosea and Archamoebae.[7]
Obazoa includes the two kingdoms Metazoa (animals) and Fungi,[b] and their closest protist relatives inside a clade known as Opisthokonta. The opisthokont protists are Nucleariida, Ichthyosporea, Pluriformea, Filasterea, Choanoflagellata and the elusive Tunicaraptor (1 species).[24] They are flagellated or amoeboid heterotrophs of vital importance in the search for the genes that allow animal multicellularity. Sister groups to Opisthokonta are Apusomonadida (28 species)[25] and Breviatea (4 species).[7]
Many smaller lineages do not belong to any of these supergroups, and are usually poorly known groups with limited data, often referred to as 'orphan groups'. Some, such as the CRuMs clade, Malawimonadida and Ancyromonadida, appear to be related to Amorphea.[7] Others, like Hemimastigophora (10 species)[26] and Provora (7 species), appear to be related to or within Diaphoretickes, a clade that unites SAR, Archaeplastida, Haptista and Cryptista.[2] A mysterious protist species, Meteora sporadica, is more closely related to the latter two of these orphan groups.[27]
Although the root of the tree is still unresolved, one possible topology of the eukaryotic tree of life is:[28][2][27]
Protist phylogeny
History
Early concepts
Goldfuss' system of life, introducing the Protozoa within animals.
From the start of the 18th century, the popular term "infusion animals" (later infusoria) referred to protists, bacteria and small invertebrate animals. In the mid-18th century, while Swedish scientist Carl von Linnaeus largely ignored the protists,[c] his Danish contemporary Otto Friedrich Müller was the first to introduce protists to the binomial nomenclature system.[29][30]
In the early 19th century, German naturalist Georg August Goldfuss introduced Protozoa (meaning 'early animals') as a class within Kingdom Animalia,[31] to refer to four very different groups: infusoria (ciliates), corals, phytozoa (such as Cryptomonas) and jellyfish. Later, in 1845, Carl Theodor von Siebold was the first to establish Protozoa as a phylum of exclusively unicellular animals consisting of two classes: Infusoria (ciliates) and Rhizopoda (amoebae, foraminifera).[32] Other scientists did not consider all of them part of the animal kingdom, and by the middle of the century they were regarded within the groupings of Protozoa (early animals), Protophyta (early plants), Phytozoa (animal-like plants) and Bacteria (mostly considered plants). Microscopic organisms were increasingly constrained in the plant/animal dichotomy. In 1858, the palaeontolgist Richard Owen was the first to define Protozoa as a separate kingdom of eukaryotic organisms, with "nucleated cells" and the "common organic characters" of plants and animals, although he also included sponges within protozoa.[8]
Origin of the protist kingdom
John Hogg's illustration of the Four Kingdoms of Nature, showing "Regnum Primigenum" (Protoctista) as a greenish haze at the base of the Animals and Plants, 1860
In 1860, British naturalist John Hogg proposed Protoctista (meaning 'first-created beings') as the name for a fourth kingdom of nature (the other kingdoms being Linnaeus' plant, animal and mineral) which comprised all the lower, primitive organisms, including protophyta, protozoa and sponges, at the merging bases of the plant and animal kingdoms.[33][8]
Haeckel's 1866 tree of life, with the third kingdom Protista.
In 1866 the 'father of protistology', German scientist Ernst Haeckel, addressed the problem of classifying all these organisms as a mixture of animal and vegetable characters, and proposed Protistenreich[34] (Kingdom Protista) as the third kingdom of life, comprising primitive forms that were "neither animals nor plants". He grouped both bacteria[35] and eukaryotes, both unicellular and multicellular organisms, as Protista. He retained the Infusoria in the animal kingdom, until German zoologist Otto Butschli demonstrated that they were unicellular.[36][37] At first, he included sponges and fungi, but in later publications he explicitly restricted Protista to predominantly unicellular organisms or colonies incapable of forming tissues. He clearly separated Protista from true animals on the basis that the defining character of protists was the absence of sexual reproduction, while the defining character of animals was the blastula stage of animal development. He also returned the terms protozoa and protophyta as subkingdoms of Protista.[8]
Butschli considered the kingdom to be too polyphyletic and rejected the inclusion of bacteria. He fragmented the kingdom into protozoa (only nucleated, unicellular animal-like organisms), while bacteria and the protophyta were a separate grouping. This strengthened the old dichotomy of protozoa/protophyta from German scientist Carl Theodor von Siebold, and the German naturalists asserted this view over the worldwide scientific community by the turn of the century. However, British biologist C. Clifford Dobell in 1911 brought attention to the fact that protists functioned very differently compared to the animal and vegetable cellular organization, and gave importance to Protista as a group with a different organization that he called "acellularity", shifting away from the dogma of German cell theory. He coined the term protistology and solidified it as a branch of study independent from zoology and botany.[8]
In 1938, American biologist Herbert Copeland resurrected Hogg's label, arguing that Haeckel's term Protista included anucleated microbes such as bacteria, which the term Protoctista (meaning "first established beings") did not. Under his four-kingdom classification (Monera, Protoctista, Plantae, Animalia), the protists and bacteria were finally split apart, recognizing the difference between anucleate (prokaryotic) and nucleate (eukaryotic) organisms. To firmly separate protists from plants, he followed Haeckel's blastular definition of true animals, and proposed defining true plants as those with chlorophyll a and b, carotene, xanthophyll and production of starch. He also was the first to recognize that the unicellular/multicellular dichotomy was invalid. Still, he kept fungi within Protoctista, together with red algae, brown algae and protozoans.[8][38] This classification was the basis for Whittaker's later definition of Fungi, Animalia, Plantae and Protista as the four kingdoms of life.[39]
In the popular five-kingdom scheme published by American plant ecologist Robert Whittaker in 1969, Protista was defined as eukaryotic "organisms which are unicellular or unicellular-colonial and which form no tissues". Just as the prokaryotic/eukaryotic division was becoming mainstream, Whittaker, after a decade from Copeland's system,[39] recognized the fundamental division of life between the prokaryotic Monera and the eukaryotic kingdoms: Animalia (ingestion), Plantae (photosynthesis), Fungi (absorption) and the remaining Protista.[40][41][8]
In the five-kingdom system of American evolutionary biologist Lynn Margulis, the term "protist" was reserved for microscopic organisms, while the more inclusive kingdom Protoctista (or protoctists) included certain large multicellular eukaryotes, such as kelp, red algae, and slime molds.[42] Some use the term protist interchangeably with Margulis' protoctist, to encompass both single-celled and multicellular eukaryotes, including those that form specialized tissues but do not fit into any of the other traditional kingdoms.[43]
Phylogenetics and modern concepts
Phylogenetic and symbiogenetic tree of living organisms, showing the origins of eukaryotes
The five-kingdom model remained the accepted classification until the development of molecular phylogenetics in the late 20th century, when it became apparent that protists are a paraphyletic group from which animals, fungi and plants evolved, and the three-domain system (Bacteria, Archaea, Eukarya) became prevalent.[44] Today, protists are not treated as a formal taxon, but the term is commonly used for convenience in two ways:[45]
Phylogenetic definition: protists are a paraphyletic group.[46] A protist is any eukaryote that is not an animal, land plant or fungus,[47] thus excluding many unicellular groups like the fungal Microsporidia, Chytridiomycetes and yeasts, and the non-unicellular Myxozoan animals included in Protista in the past.[48]
Functional definition: protists are essentially those eukaryotes that are never multicellular,[45] that either exist as independent cells, or if they occur in colonies, do not show differentiation into tissues.[49] While in popular usage, this definition excludes the variety of non-colonial multicellularity types that protists exhibit, such as aggregative (e.g. choanoflagellates) or complex multicellularity (e.g. brown algae).[50]
Kingdoms Protozoa and Chromista
Further information: Cavalier-Smith's system of classification
There is, however, one classification of protists based on traditional ranks that lasted until the 21st century. The British protozoologist Thomas Cavalier-Smith, since 1998, developed a six-kingdom model:[d] Bacteria, Animalia, Plantae, Fungi, Protozoa and Chromista.[14][51] In his context, paraphyletic groups take preference over clades:[14] both protist kingdoms Protozoa and Chromista contain paraphyletic phyla such as Apusozoa, Eolouka or Opisthosporidia. Additionally, red and green algae are considered true plants, while the fungal groups Microsporidia, Rozellida and Aphelida are considered protozoans under the phylum Opisthosporidia. This scheme endured until 2021, the year of his last publication.[21]
Diversity
Species diversity
Difference between morphological (A) and genetic (B) view of total eukaryotic diversity. Protists dominate DNA barcoding analyses, but constitute a minority of catalogued species.[52]
According to molecular data, protists dominate eukaryotic diversity, accounting for a vast majority of environmental DNA sequences or operational taxonomic units (OTUs). However, their species diversity is severely underestimated by traditional methods that differentiate species based on morphological characteristics. The number of described protistan species is very low (ranging from 26,000[53] to 74,400[52] as of 2012) in comparison to the diversity of plants, animals and fungi, which are historically and biologically well-known and studied. The predicted number of species also varies greatly, ranging from 1.4×105 to 1.6×106, and in several groups the number of predicted species is arbitrarily doubled. Most of these predictions are highly subjective.[52]
Molecular techniques such as DNA barcoding are being used to compensate for the lack of morphological diagnoses, but this has revealed an unknown vast diversity of protists that is difficult to accurately process because of the exceedingly large genetic divergence between the different protistan groups. Several different molecular markers need to be used to survey the vast protistan diversity, because there is no universal marker that can be applied to all lineages.[52]
Biomass
Protists make up a large portion of the biomass in both marine and terrestrial ecosystems. It has been estimated that protists account for 4 gigatons (Gt) of biomass in the entire planet Earth. This amount is smaller than 1% of all biomass, but is still double the amount estimated for all animals (2 Gt). Together, protists, animals, archaea (7 Gt) and fungi (12 Gt) account for less than 10% of the total biomass of the planet, because plants (450 Gt) and bacteria (70 Gt) are the remaining 80% and 15% respectively.[54]
Ecology
Protists are highly abundant and diverse in all types of ecosystems, especially free-living (i.e. non-parasitic) groups. An unexpectedly enormous, taxonomically undescribed diversity of eukaryotic microbes is detected everywhere in the form of environmental DNA or RNA. The richest protist communities appear in soil, followed by ocean and freshwater habitats.[55]
Phagotrophic protists (consumers) are the most diverse functional group in all ecosystems, with three main taxonomical groups of phagotrophs: Rhizaria (mainly Cercozoa in freshwater and soil habitats, and Radiolaria in oceans), ciliates (most abundant in freshwater and second most abundant in soil) and non-photosynthetic stramenopiles (third most represented overall, higher in soil than in oceans). Phototrophic protists (producers) appear in lower proportions, probably constrained by intense predation. They exist in similar abundance in both oceans and soil. They are mostly dinophytes in oceans, chrysophytes in freshwater, and Archaeplastida in soil.[55]
Marine
Further information: Marine protists
Marine diatoms are important oxygen producers.
Marine protists are highly diverse, have a fundamental impact on biogeochemical cycles (particularly, the carbon cycle)[56] and are at the base of the marine trophic networks as part of the plankton.[57]
Phototrophic marine protists located in the photic zone as phytoplankton are vital primary producers in the oceanic systems. They fix as much carbon as all terrestrial plants together.[55] The smallest fractions, the picoplankton (<2 μm) and nanoplankton (2–20 μm), are dominated by several different algae (prymnesiophytes, pelagophytes, prasinophytes); fractions larger than 5 μm are instead dominated by diatoms and dinoflagellates. The heterotrophic fraction of marine picoplankton encompasses primarily early-branching stramenopiles (e.g. bicosoecids and labyrinthulomycetes), as well as alveolates, ciliates and radiolarians; protists of lower frequency include cercozoans and cryptophytes.[58]
Prymnesium, a constitutive mixotroph that participates in toxic algal blooms.
Mixotrophic marine protists, while not very researched, are present abundantly and ubiquitously in the global oceans, on a wide range of marine habitats. In metabarcoding analyses, they constitute more than 12% of the environmental sequences. They are an important and underestimated source of carbon in eutrophic and oligotrophic habitats.[57] Their abundance varies seasonally.[59] Planktonic protists are classified into various functional groups or 'mixotypes' that present different biogeographies:
Constitutive mixotrophs, also called 'phytoplankton that eat', have the innate ability to photosynthesize. They have diverse feeding behaviors: some require phototrophy, others phagotrophy, and others are obligate mixotrophs.[57] They are responsible for harmful algal blooms. They dominate the eukaryotic microbial biomass in the photic zone, in eutrophic and oligotrophic waters across all climate zones, even in non-bloom conditions. They account for significant, often dominant predation of bacteria.[60]
Noctiluca, a specialist non-constitutive mixotroph that photosynthesizes through endosymbionts.
Non-constitutive mixotrophs acquire the ability to photosynthesize by stealing chloroplasts from their prey. They can be divided into two: generalists, which can use chloroplasts stolen from a variety of prey (e.g. oligotrich ciliates), or specialists, which have developed the need to only acquire chloroplasts from a few specific prey. The specialists are further divided into two: plastidic, those which contain differentiated plastids (e.g. Mesodinium, Dinophysis), and endosymbiotic, those which contain endosymbionts (e.g. mixotrophic Rhizaria such as Foraminifera and Radiolaria, dinoflagellates like Noctiluca).[60] Both plastidic and generalist non-constitutive mixotrophs have similar biogeographies and low abundance, mostly found in eutrophic coastal waters. Generalist ciliates can account for up to 50% of ciliate communities in the photic zone. The endosymbiotic mixotrophs are the most abundant non-constitutive type.[57]
Freshwater
Freshwater planktonic protist communities are characterized by a higher "beta diversity" (i.e. highly heterogeneous between samples) than soil and marine plankton. The high diversity can be a result of the hydrological dynamic of recruiting organisms from different habitats through extreme floods.[61] The main freshwater producers (chrysophytes, cryptophytes and dinophytes) behave alternatively as consumers (mixotrophs). At the same time, strict consumers (non-photosynthetic) are less abundant in freshwater, implying that the consumer role is partly taken by these mixotrophs.[55]
Soil
Soil protist communities are ecologically the richest. This may be due to the complex and highly dynamic distribution of water in the sediment, which creates extremely heterogenous environmental conditions. The constantly changing environment promotes the activity of only one part of the community at a time, while the rest remains inactive; this phenomenon promotes high microbial diversity in prokaryotes as well as protists. Only a small fraction of the detected diversity of soil-dwelling protists has been described (8.1% as of 2017).[55] Soil protists are also morphologically and functionally diverse, with four major categories:[62]
Dictyostelids are fungus-like protists present in soil.
Cercomonads (Rhizaria) are important phagotrophic protists in soil.
Photoautotrophic soil protists, or algae, are as abundant as their marine counterparts. Given the importance of marine algae, soil algae may provide a larger contribution to the global carbon cycle than previously thought, but the magnitude of their carbon fixation has yet to be quantified.[55] Most soil algae belong to the supergroups Stramenopiles (diatoms, Xanthophyceae and Eustigmatophyceae) and Archaeplastida (Chlorophyceae and Trebouxiophyceae). There is also the presence of environmental DNA from dinoflagellates and haptophytes in soil, but no living forms have been seen.[62]
Fungus-like protists are present abundantly in soil. Most environmental sequences belong to the Oomycetes (Stramenopiles), an osmotrophic and saprotrophic group that contains free-living and parasitic species of other protists, fungi, plants and animals. Another important group in soil are slime molds (found in Amoebozoa, Opisthokonta, Rhizaria and Heterolobosea), which reproduce by forming fruiting bodies known as sporocarps (originated from a single cell) and sorocarps (from aggregations of cells).[62]
Phagotrophic protists are abundant and essential in soil ecosystems. As bacterial grazers, they have a significant role in the foodweb: they excrete nitrogen in the form of NH3, making it available to plants and other microbes.[63] Many soil protists are also mycophagous, and facultative (i.e. non-obligate) mycophagy is a widespread evolutionary feeding mode among soil protozoa.[64] Amoeboflagellates like the glissomonads and cercomonads (in Rhizaria) are among the most abundant soil protists: they possess both flagella and pseudopodia, a morphological variability well suited for foraging between soil particles. Testate amoebae (e.g. arcellinids and euglyphids) have shells that protect against desiccation and predation, and their contribution to the silica cycle through the biomineralization of shells is as important as that of forest trees.[62]
Parasitic soil protists (in Apicomplexa) are diverse, ubiquitous and have an important role as parasites of soil-dwelling invertebrate animals. In Neotropical forests, environmental DNA from the apicomplexan gregarines dominates protist diversity.[62]
Parasitic
Blastocystis (Stramenopiles) is a prevalent intestinal parasite in humans.
Parasitic protists represent around 15–20% of all environmental DNA in marine and soil systems, but only around 5% in freshwater systems, where chytrid fungi likely fill that ecological niche. In oceanic systems, parasitoids (i.e. those which kill their hosts, e.g. Syndiniales) are more abundant. In soil ecosystems, true parasites (i.e. those which do not kill their hosts) are primarily animal-hosted Apicomplexa (Alveolata) and plant-hosted oomycetes (Stramenopiles) and plasmodiophorids (Rhizaria). In freshwater ecosystems, parasitoids are mainly Perkinsea and Syndiniales (Alveolata), as well as the fungal Chytridiomycota. True parasites in freshwater are mostly oomycetes, Apicomplexa and Ichthyosporea.[55]
Some protists are significant parasites of animals (e.g.; five species of the parasitic genus Plasmodium cause malaria in humans and many others cause similar diseases in other vertebrates), plants[65][66] (the oomycete Phytophthora infestans causes late blight in potatoes)[67] or even of other protists.[68][69]
Around 100 protist species can infect humans.[62] Two papers from 2013 have proposed virotherapy, the use of viruses to treat infections caused by protozoa.[70][71]
Researchers from the Agricultural Research Service are taking advantage of protists as pathogens to control red imported fire ant (Solenopsis invicta) populations in Argentina. Spore-producing protists such as Kneallhazia solenopsae (recognized as a sister clade or the closest relative to the fungus kingdom now)[72] can reduce red fire ant populations by 53–100%.[73] Researchers have also been able to infect phorid fly parasitoids of the ant with the protist without harming the flies. This turns the flies into a vector that can spread the pathogenic protist between red fire ant colonies.[74]
Biology
Physiological adaptations
Paramecium aurelia with contractile vacuoles
While, in general, protists are typical eukaryotic cells and follow the same principles of physiology and biochemistry described for those cells within the "higher" eukaryotes (animals, fungi or plants),[75] they have evolved a variety of unique physiological adaptations that do not appear in those eukaryotes.[76]
Osmoregulation. Freshwater protists without cell walls are able to regulate their osmosis through contractile vacuoles, specialized organelles that periodically excrete fluid high in potassium and sodium through a cycle of diastole and systole. The cycle stops when the cells are placed in a medium with different salinity, until the cell adapts.[76]
An image of a single cell featuring a large nucleus and an ocelloid, which is composed of a roundish "lens" and a darkly pigmented disc-shaped retinal body.
Light micrograph of an ocelloid-containing dinoflagellate. n: nucleus, double arrowhead: ocelloid, scale bar: 10 μm.[77]
Energetic adaptations. The last eukaryotic common ancestor was aerobic, bearing mitochondria for oxidative metabolism. Many lineages of free-living and parasitic protists have independently evolved and adapted to inhabit anaerobic or microaerophilic habitats, by modifying the early mitochondria into hydrogenosomes, organelles that generate ATP anaerobically through fermentation of pyruvate. In a parallel manner, in the microaerophilic trypanosomatid protists, the fermentative glycosome evolved from the peroxisome.[76]
Sensory adaptations. Many flagellates and probably all motile algae exhibit a positive phototaxis (i.e. they swim or glide toward a source of light). For this purpose, they exhibit three kinds of photoreceptors or "eyespots": (1) receptors with light antennae, found in many green algae, dinoflagellates and cryptophytes; (2) receptors with opaque screens; and (3) complex ocelloids with intracellular lenses, found in one group of predatory dinoflagellates, the Warnowiaceae. Additionally, some ciliates orient themselves in relation to the Earth's gravitational field while moving (geotaxis), and others swim in relation to the concentration of dissolved oxygen in the water.[76]
Endosymbiosis. Protists have an accentuated tendency to include endosymbionts in their cells, and these have produced new physiological opportunities. Some associations are more permanent, such as Paramecium bursaria and its endosymbiont Chlorella; others more transient. Many protists contain captured chloroplasts, chloroplast-mitochondrial complexes, and even eyespots from algae. The xenosomes are bacterial endosymbionts found in ciliates, sometimes with a methanogenic role inside anaerobic ciliates.[76]
Sexual reproduction
Two similar-looking but sexually distinct Coleps partners connected at their front ends exchange genetic material via a plasma bridge.
Protists generally reproduce asexually under favorable environmental conditions, but tend to reproduce sexually under stressful conditions, such as starvation or heat shock. Oxidative stress, which leads to DNA damage, also appears to be an important factor in the induction of sex in protists.[78]
Eukaryotes emerged in evolution more than 1.5 billion years ago.[79] The earliest eukaryotes were protists. Although sexual reproduction is widespread among multicellular eukaryotes, it seemed unlikely until recently, that sex could be a primordial and fundamental characteristic of eukaryotes. The main reason for this view was that sex appeared to be lacking in certain pathogenic protists whose ancestors branched off early from the eukaryotic family tree. However, several of these "early-branching" protists that were thought to predate the emergence of meiosis and sex (such as Giardia lamblia and Trichomonas vaginalis) are now known to descend from ancestors capable of meiosis and meiotic recombination, because they have a set core of meiotic genes that are present in sexual eukaryotes.[80][81] Most of these meiotic genes were likely present in the common ancestor of all eukaryotes,[82] which was likely capable of facultative (non-obligate) sexual reproduction.[83]
This view was further supported by a 2011 study on amoebae. Amoebae have been regarded as asexual organisms, but the study describes evidence that most amoeboid lineages are ancestrally sexual, and that the majority of asexual groups likely arose recently and independently.[84] Even in the early 20th century, some researchers interpreted phenomena related to chromidia (chromatin granules free in the cytoplasm) in amoebae as sexual reproduction.[85]
Sex in pathogenic protists
Some commonly found protist pathogens such as Toxoplasma gondii are capable of infecting and undergoing asexual reproduction in a wide variety of animals – which act as secondary or intermediate host – but can undergo sexual reproduction only in the primary or definitive host (for example: felids such as domestic cats in this case).[86][87][88]
Some species, for example Plasmodium falciparum, have extremely complex life cycles that involve multiple forms of the organism, some of which reproduce sexually and others asexually.[89] However, it is unclear how frequently sexual reproduction causes genetic exchange between different strains of Plasmodium in nature and most populations of parasitic protists may be clonal lines that rarely exchange genes with other members of their species.[90]
The pathogenic parasitic protists of the genus Leishmania have been shown to be capable of a sexual cycle in the invertebrate vector, likened to the meiosis undertaken in the trypanosomes.[91]
Fossil record
Main article: Protists in the fossil record
Further information: protist shell and microfossils
Mesoproterozoic
Further information: Protosterol biota
By definition, all eukaryotes before the existence of plants, animals and fungi are considered protists. For that reason, this section contains information about the deep ancestry of all eukaryotes.
All living eukaryotes, including protists, evolved from the last eukaryotic common ancestor (LECA). Descendants of this ancestor are known as "crown-group" or "modern" eukaryotes. Molecular clocks suggest that LECA originated between 1200 and more than 1800 million years ago (Ma). Based on all molecular predictions, modern eukaryotes reached morphological and ecological diversity before 1000 Ma in the form of multicellular algae capable of sexual reproduction, and unicellular protists capable of phagocytosis and locomotion. However, the fossil record of modern eukaryotes is very scarce around this period, which contradicts the predicted diversity.[92]
Instead, the fossil record of this period contains "stem-group eukaryotes". These fossils cannot be assigned to any known crown group, so they probably belong to extinct lineages that originated before LECA. They appear continuously throughout the Mesoproterozoic fossil record (1650–1000 Ma). They present defining eukaryote characteristics such as complex cell wall ornamentation and cell membrane protrusions, which require a flexible endomembrane system. However, they had a major distinction from crown eukaryores: the composition of their cell membrane. Unlike crown eukaryotes, which produce "crown sterols" for their cell membranes (e.g. cholesterol and ergosterol), stem eukaryotes produced "protosterols", which appear earlier in the biosynthetic pathway.[92]
Crown sterols, while metabolically more expensive, may have granted several evolutionary advantages for LECA's descendants. Specific unsaturation patterns in crown sterols protect against osmotic shock during desiccation and rehydration cycles. Crown sterols can also receive ethyl groups, thus enhancing cohesion between lipids and adapting cells against extreme cold and heat. Moreover, the additional steps in the biosynthetic pathway allow cells to regulate the proportion of different sterols in their membranes, in turn allowing for a wider habitable temperature range and unique mechanisms such as asymmetric cell division or membrane repair under exposure to UV light. A more speculative role of these sterols is their protection against the Proterozoic changing oxygen levels. It is theorized that all of these sterol-based mechanisms allowed LECA's descendants to live as extremophiles of their time, diversifying into ecological niches that experienced cycles of desiccation and rehydration, daily extremes of high and low temperatures, and elevated UV radiation (such as mudflats, rivers, agitated shorelines and subaerial soil).[92]
In contrast, the named mechanisms were absent in stem-group eukaryotes, as they were only capable of producing protosterols. Instead, these protosterol-based life forms occupied open marine waters. They were facultative anaerobes that thrived in Mesoproterozoic waters, which at the time were low on oxygen. Eventually, during the Tonian period (Neoproterozoic era), oxygen levels increased and the crown eukaryotes were able to expand to open marine environments thanks to their preference for more oxygenated habitats. Stem eukaryotes may have been driven to extinction as a result of this competition. Additionally, their protosterol membranes may have posed a disadvantage during the cold of the Cryogenian "Snowball Earth" glaciations and the extreme global heat that came afterwards.[92]
Neoproterozoic
Modern eukaryotes began to appear abundantly in the Tonian period (1000–720 Ma), fueled by the proliferation of red algae. The oldest fossils assigned to modern eukaryotes belong to two photosynthetic protists: the multicellular red alga Bangiomorpha (from 1050 Ma), and the chlorophyte green alga Proterocladus (from 1000 Ma).[92] Abundant fossils of heterotrophic protists appear later, around 900 Ma, with the emergence of fungi.[92] For example, the oldest fossils of Amoebozoa are vase-shaped microfossils resembling modern testate amoebae, found in 800 million-year-old rocks.[93][94] Radiolarian shells are found abundantly in the fossil record after the Cambrian period (~500 Ma), but more recent paleontological studies are beginning to interpret some Precambrian fossils as the earliest evidence of radiolarians.[95][96][97]
See also
Evolution of sexual reproduction
Protist locomotion
Footnotes
According to some classifications,[14] all of Archaeplastida is treated as Kingdom Plantae, but others consider the algae (or non-terrestrial "plants") to be protists.[7]
Under traditional classifications, the groups Microsporidia, Aphelida and Rozellida are considered to be protists, commonly grouped by the name Opisthosporidia and treated as the immediate relative of Eumycota or true fungi.[21] However, many researchers currently accept those three groups as part of a larger Kingdom Fungi.[1][22][23]
Carl von Linnaeus did not mention a single protist genus until the tenth edition of Systema Naturae of 1758, where Volvox was recorded.[29]
In 2015, Cavalier-Smith's initial six-kingdom model was revised into a seven-kingdom model after the inclusion of Archaea.[51]
References
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q (2019). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/jeu.12691. PMC 6492006. PMID 30257078.
Tikhonenkov DV, Mikhailov KV, Gawryluk RMR, et al. (2022). "Microbial predators form a new supergroup of eukaryotes". Nature. 612 (7941): 714–719. Bibcode:2022Natur.612..714T. doi:10.1038/s41586-022-05511-5. PMID 36477531. S2CID 254436650.
Fabien Burki; Miguel M. Sandin; Mahwash Jamy (2021). "Diversity and ecology of protists revealed by metabarcoding". Current Biology. 31 (19): R1267–R1280. doi:10.1016/j.cub.2021.07.066. PMID 34637739. S2CID 238588753.
Simonite T (November 2005). "Protists push animals aside in rule revamp". Nature. 438 (7064): 8–9. Bibcode:2005Natur.438....8S. doi:10.1038/438008b. PMID 16267517.
Harper D, Benton, Michael (2009). Introduction to Paleobiology and the Fossil Record. Wiley-Blackwell. p. 207. ISBN 978-1-4051-4157-4.
Siddiqui R, Kulsoom H, Lalani S, Khan NA (July 2016). "Isolation of Balamuthia mandrillaris-specific antibody fragments from a bacteriophage antibody display library". Experimental Parasitology. 166: 94–96. doi:10.1016/j.exppara.2016.04.001. PMID 27055361.
Simpson AGB, Slamovits CH, Archibald JM (2017). "Protist Diversity and Eukaryote Phylogeny". In Archibald JM, Simpson AGB, Slamovits CH (eds.). Handbook of the Protists. Vol. 1 (2 ed.). Springer International Publishing. pp. 1–22. doi:10.1007/978-3-319-28149-0_45. ISBN 978-3-319-28147-6.
Scamardella JM (1999). "Not plants or animals: A brief history of the origin of Kingdoms Protozoa, Protista, and Protoctista". International Microbiology. 2 (4): 207–221. PMID 10943416.
De Bruyn, P. P. H. (March 1947). "Theories of amoeboid movement". The Quarterly Review of Biology. 22 (1). The University of Chicago Press: 1–24. doi:10.1086/395577. JSTOR 2813332. PMID 20287832.
Brown MW, Kolisko M, Silberman JD, Roger AJ (2012). "Aggregative Multicellularity Evolved Independently in the Eukaryotic Supergroup Rhizaria". Current Biology. 22 (12): 1123–1127. doi:10.1016/j.cub.2012.04.021. PMID 22608512. S2CID 17510471.
"Facts about malaria". www.ecdc.europa.eu. June 9, 2017.
Corliss, J.O. (1995). "The ambiregnal protists and the codes of nomenclature: a brief review of the problem and of proposed solutions". Bulletin of Zoological Nomenclature. 52: 11–17. doi:10.5962/bhl.part.6717.
Richard Barnes; Stephen Kent (2001). The Invertebrates: A Synthesis. Wiley-Blackwell. p. 41. ISBN 978-0-632-04761-1.
Cavalier-Smith T (August 1998). "A revised six-kingdom system of life". Biological Reviews of the Cambridge Philosophical Society. 73 (3): 203–266. doi:10.1111/j.1469-185X.1998.tb00030.x. PMID 9809012.
Gawryluk RMR, Tikhonenkov DV, Hehenberger E, et al. (2019). "Non-photosynthetic predators are sister to red algae". Nature. 572 (7768): 240–243. doi:10.1038/s41586-019-1398-6. PMID 31316212. S2CID 197542583.
Olivier De Clerck; Kenny A. Bogaert; Frederik Leliaert (2012). "Chapter Two – Diversity and Evolution of Algae: Primary Endosymbiosis". In Gwenaël Piganeau (ed.). Advances in Botanical Research. Vol. 64. Academic Press. pp. 55–86. doi:10.1016/B978-0-12-391499-6.00002-5. ISBN 9780123914996. ISSN 0065-2296.
Gawryluk, Ryan M. R.; Tikhonenkov, Denis V.; Hehenberger, Elisabeth; Husnik, Filip; Mylnikov, Alexander P.; Keeling, Patrick J. (August 2019). "Non-photosynthetic predators are sister to red algae". Nature. 572 (7768): 240–243. doi:10.1038/s41586-019-1398-6. ISSN 1476-4687. PMID 31316212. S2CID 197542583.
Mann DG, Crawford RM, Round FE (2017). "Bacillariophyta". In Archibald JM, Simpson AGB, Slamovits CH (eds.). Handbook of the Protists. Vol. 1 (2 ed.). Springer International Publishing. pp. 205–266. doi:10.1007/978-3-319-28149-0_29. ISBN 978-3-319-28147-6.
Kawai H, Henry EC (2017). "Phaeophyta". In Archibald JM, Simpson AGB, Slamovits CH (eds.). Handbook of the Protists. Vol. 1 (2 ed.). Springer International Publishing. pp. 267–304. doi:10.1007/978-3-319-28149-0_31. ISBN 978-3-319-28147-6.
Foissner, W.; Hawksworth, David, eds. (2009). Protist Diversity and Geographical Distribution. Topics in Biodiversity and Conservation. Vol. 8. Springer Netherlands. p. 111. doi:10.1007/978-90-481-2801-3. ISBN 9789048128006.
Cavalier-Smith T (May 2022). "Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi". Protoplasma. 259 (3): 487–593. doi:10.1007/s00709-021-01665-7. PMC 9010356. PMID 34940909.
Tedersoo, Leho; Sánchez-Ramírez, Santiago; Kõljalg, Urmas; Bahram, Mohammad; Döring, Markus; Schigel, Dmitry; May, Tom; Ryberg, Martin; Abarenkov, Kessy (2018), "High-level classification of the Fungi and a tool for evolutionary ecological analyses", Fungal Diversity, 90: 135–159, doi:10.1007/s13225-018-0401-0, hdl:10138/238983, S2CID 21714270
Wijayawardene, N.N.; Hyde, K.D.; Dai, D.Q.; Sánchez-García, M.; Goto, B.T.; Saxena, R.K.; et al. (2022). "Outline of Fungi and fungus-like taxa – 2021". Mycosphere. 13 (1): 53–453. doi:10.5943/mycosphere/13/1/2. hdl:10481/76378. S2CID 249054641.
Tikhonenkov DV, Mikhailov KV, Hehenberger E, Mylnikov AP, Aleoshin VV, Keeling PJ, et al. (2020). "New Lineage of Microbial Predators Adds Complexity to Reconstructing the Evolutionary Origin of Animals". Current Biology. 30 (22): 4500–4509. doi:10.1016/j.cub.2020.08.061. PMID 32976804.
Torruella G, Galindo LJ, Moreira D, Ciobanu M, Heiss AA, Yubuki N, et al. (2022). "Expanding the molecular and morphological diversity of Apusomonadida, a deep-branching group of gliding bacterivorous protists". Journal of Eukaryotic Microbiology. 70 (2): e12956. doi:10.1111/jeu.12956. hdl:2117/404026. PMID 36453005. S2CID 253460648.
Lax, Gordon; Eglit, Yana; Eme, Laura; Bertrand, Erin M.; Roger, Andrew J.; Simpson, Alastair G. B. (14 November 2018). "Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes". Nature. 564 (7736): 410–414. Bibcode:2018Natur.564..410L. doi:10.1038/s41586-018-0708-8. ISSN 0028-0836. PMID 30429611. S2CID 205570993.
Eglit, Yana; Shiratori, Takashi; Jerlström-Hultqvist, Jon; Williamson, Kelsey; Roger, Andrew J.; Ishida, Ken-Ichiro; Simpson, Alastair G.B. (22 January 2024). "Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora". Current Biology. 34: 451–459. doi:10.1016/j.cub.2023.12.032.
Brown MW, et al. (2018), "Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group", Genome Biology and Evolution, 10 (2): 427–433, doi:10.1093/gbe/evy014, PMC 5793813, PMID 29360967
Barry S. C. Leadbeater; Sharon M. M. McReady (2000). "Chapter 1. The flagellates: historical perspectives". In Barry S. C. Leadbeater; J. C. Green (eds.). The Flagellates. Unity, diversity and evolution. London: Taylor & Francis. pp. 1–26. doi:10.1201/9781482268225. ISBN 9780429182136.
Marc J. Ratcliff (2009). "The Emergence of the Systematics of Infusoria". The Quest for the Invisible: Microscopy in the Enlightenment. Ashgate. pp. 177–216. ISBN 9781409480266.
Goldfuß (1818). "Ueber die Classification der Zoophyten" [On the classification of zoophytes]. Isis, Oder, Encyclopädische Zeitung von Oken (in German). 2 (6): 1008–1019. From p. 1008: "Erste Klasse. Urthiere. Protozoa." (First class. Primordial animals. Protozoa.) [Note: each column of each page of this journal is numbered; there are two columns per page.]
Carl Theodor Ernst von Siebold; Hermann Stannius (1846–1848). Lehrbuch der vergleichenden Anatomie Vol. 1: Wirbellose Thiere [Textbook of Comparative Anatomy Vol. 1: Invertebrate Animals] (in German). Vol. 1. Berlin, Germany: Veit. p. 3. p. 3: "Erste Hauptgruppe. Protozoa. Thiere, in welchen die verschiedenen Systeme der Organe nicht scharf ausgeschieden sind, und deren unregelmässige Form und einfache Organisation sich auf eine Zelle reduziren lassen." [First principal group. Protozoa. Animals, in which the different systems of organs are not sharply separated, and whose irregular form and simple organization can be reduced to one cell.]
John Hogg (1860). "On the distinctions of a Plant and an Animal, and on a Fourth Kingdom of Nature". Edinburgh New Philosophical Journal. 2nd series. 12: 216–225. p. 223: "... I here suggest a fourth or an additional kingdom, under the title of the Primigenal kingdom, ... This Primigenal kingdom would comprise all the lower creatures, or the primary organic beings, – 'Protoctista,' – from πρώτος, first, and χτιστά, created beings; ..."
Haeckel, Ernst (1878). Das protistenreich. Eine populäre uebersicht über das formengebiet der niedersten lebewesen [The protistan kingdom. A popular survey of the forms of the lowest living beings] (in German). Leipzig: E. Günther. doi:10.5962/bhl.title.58542.
Taylor, F. J. R. 'Max' (11 January 2003). "The collapse of the two-kingdom system, the rise of protistology and the founding of the International Society for Evolutionary Protistology (ISEP)". International Journal of Systematic and Evolutionary Microbiology. 53 (6): 1707–1714. doi:10.1099/ijs.0.02587-0. PMID 14657097.
Haeckel, Ernst (1866). Generelle Morphologie der Organismen [The General Morphology of Organisms] (in German). Vol. 1. Berlin, (Germany): G. Reimer. pp. 215ff. From p. 215: "VII. Character des Protistenreiches." (VII. Character of the kingdom of Protists.)
Rothschild, Lynn J. (1989). "Protozoa, Protista, Protoctista: what's in a name?". Journal of the History of Biology. 22 (2): 277–305. doi:10.1007/BF00139515. PMID 11542176. S2CID 32462158.
Copeland HF (1938). "The Kingdoms of Organisms". Quarterly Review of Biology. 13 (4): 383–420. doi:10.1086/394568. JSTOR 2808554. S2CID 84634277.
Whittaker RH (1959). "On the Broad Classification of Organisms". Quarterly Review of Biology. 34 (3): 210–226. doi:10.1086/402733. JSTOR 2816520. PMID 13844483. S2CID 28836075.
Whittaker RH (January 1969). "New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms". Science. 163 (3863): 150–160. Bibcode:1969Sci...163..150W. CiteSeerX 10.1.1.403.5430. doi:10.1126/science.163.3863.150. PMID 5762760.
Hagen JB (2012). "depiction of Whittaker's early four-kingdom system, based on three modes of nutrition and the distinction between unicellular and multicellular body plans". BioScience. 62: 67–74. doi:10.1525/bio.2012.62.1.11.
Margulis L, Chapman MJ (2009-03-19). Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth. Academic Press. ISBN 9780080920146.
Archibald, John M.; Simpson, Alastair G. B.; Slamovits, Claudio H., eds. (2017). Handbook of the Protists (2 ed.). Springer International Publishing. pp. ix. ISBN 978-3-319-28147-6.
Stechmann A, Cavalier-Smith T (September 2003). "The root of the eukaryote tree pinpointed" (PDF). Current Biology. 13 (17): R665–667. doi:10.1016/S0960-9822(03)00602-X. PMID 12956967. S2CID 6702524.
O'Malley MA, Simpson AG, Roger AJ (2012). "The other eukaryotes in light of evolutionary protistology". Biology & Philosophy. 28 (2): 299–330. doi:10.1007/s10539-012-9354-y. S2CID 85406712.
Schlegel, M.; Hulsmann, N. (2007). "Protists – A textbook example for a paraphyletic taxon☆". Organisms Diversity & Evolution. 7 (2): 166–172. doi:10.1016/j.ode.2006.11.001.
"Protista". microbeworld.org. Archived from the original on 13 June 2016. Retrieved 11 June 2016.
Štolc A (1899). "Actinomyxidies, nouveau groupe de Mesozoaires parent des Myxosporidies". Bull. Int. l'Acad. Sci. Bohème. 12: 1–12.
Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". The Journal of Eukaryotic Microbiology. 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873. S2CID 8060916.
O'Malley, Maureen A. (2022). "Getting at the Basics of Multicellularity". In Herron, Matthew D.; Conlin, Peter L.; Ratcliff, William C. (eds.). The Evolution of Multicellularity. Evolutionary Cell Biology (1st ed.). CRC Press. pp. 9–24. doi:10.1201/9780429351907. ISBN 9780429351907. S2CID 248578172.
Ruggiero, Michael A.; Gordon, Dennis P.; Orrell, Thomas M.; Bailly, Nicolas; Bourgoin, Thierry; Brusca, Richard C.; Cavalier-Smith, Thomas; Guiry, Michael D.; Kirk, Paul M.; Thuesen, Erik V. (2015). "A higher level classification of all living organisms". PLOS ONE. 10 (4): e0119248. Bibcode:2015PLoSO..1019248R. doi:10.1371/journal.pone.0119248. PMC 4418965. PMID 25923521.
Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Cepicka I, Decelle J, Dunthorn M, Fiore-Donno AM, Gile GH, Holzmann M, Jahn R, Jirků M, Keeling PJ, Kostka M, Kudryavtsev A, Lara E, Lukeš J, Mann DG, Mitchell EAD, Nitsche F, Romeralo M, Saunders GW, Simpson AGB, Smirnov AV, Spouge JL, Stern JF, Stoeck T, Zimmermann J, Schindel D, de Vargas C (2012). "CBOL Protist Working Group: Barcoding Eukaryotic Richness beyond the Animal, Plant, and Fungal Kingdoms". PLOS Biology. 10 (11): e1001419. doi:10.1371/journal.pbio.1001419. PMC 3491025. PMID 23139639. S2CID 6330045.
Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011). "How Many Species Are There on Earth and in the Ocean?". PLOS Biology. 9 (8): e1001127. doi:10.1371/journal.pbio.1001127. PMC 3160336. PMID 21886479.
Bar-On, Yinon M.; Phillips, Rob; Milo, Ron (17 May 2018). "The biomass distribution on Earth". Proceedings of the National Academy of Sciences. 115 (25): 6506–6511. Bibcode:2018PNAS..115.6506B. doi:10.1073/pnas.1711842115. ISSN 0027-8424. PMC 6016768. PMID 29784790.
Singer, David; Seppey, Christophe V.W.; Lentendu, Guillaume; Dunthorn, Micah; Bass, David; Belbahri, Lassâad; Blandenier, Quentin; Debroas, Didier; de Groot, G. Arjen; de Vargas, Colomban; Domaizon, Isabelle; Duckert, Clément; Izaguirre, Irina; Koenig, Isabelle; Mataloni, Gabriela; Schiaffino, M. Romina; Mitchell, Edward A.D.; Geisen, Stefan; Lara, Enrique (January 2021). "Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems". Environment International. 146 (106262): 106262. doi:10.1016/j.envint.2020.106262. hdl:10261/265020. PMID 33221595.
Keeling PJ, Campo JD (June 2017). "Marine Protists Are Not Just Big Bacteria". Current Biology. 27 (11): R541–R549. doi:10.1016/j.cub.2017.03.075. PMID 28586691.
Faure, Emile; Not, Fabrice; Benoiston, Anne-Sophie; Labadie, Karine; Bittner, Lucie; Ayata, Sakina-Dorothée (April 2019). "Mixotrophic protists display contrasted biogeographies in the global ocean". The ISME Journal. 13 (4): 1072–1083. doi:10.1038/s41396-018-0340-5. PMC 6461780. PMID 30643201.
Epstein, Slava; López-García, Purificación (2007). ""Missing" protists: a molecular perspective". Biodiversity and Conservation. 17 (2): 261–276. doi:10.1007/s10531-007-9250-y. S2CID 3960288.
Leles SG, Mitra A, Flynn KJ, Stoecker DK, Hansen PJ, Calbet A, McManus GB, Sanders RW, Caron DA, Not F, Hallegraeff GM, Pitta P, Raven JA, Johnson MD, Glibert PM, Våge S (August 2017). "Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance". Proceedings of the Royal Society B: Biological Sciences. 284 (1860): 20170664. doi:10.1098/rspb.2017.0664. PMC 5563798. PMID 28768886.
Mitra, Aditee; Flynn, Kevin J.; Tillmann, Urban; Raven, John A.; Caron, David; Stoecker, Diane K.; Not, Fabrice; Hansen, Per J.; Hallegraeff, Gustaaf; Sanders, Robert; Wilken, Susanne; McManus, George; Johnson, Mathew; Pitta, Paraskevi; Våge, Selina; Berge, Terje; Calbet, Albert; Thingstad, Frede; Jeong, Hae Jin; Burkholder, JoAnn; Glibert, Patricia M.; Granéli, Edna; Lundgren, Veronica (2016). "Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies". Protist. 167 (2): 106–120. doi:10.1016/j.protis.2016.01.003. hdl:10261/131722. PMID 26927496.
Metz S, Huber P, Accattatis V, Lopes dos Santos A, Bigeard E, Unrein F, Chambouvet A, Not F, Lara E, Devercelli M (2022). "Freshwater protists: unveiling the unexplored in a large floodplain system". Environmental Microbiology. 24 (4): 1731–1745. doi:10.1111/1462-2920.15838. PMID 34783136. S2CID 244133100.
Geisen, Stefan; Mitchell, Edward A. D.; Adl, Sina; Bonkowski, Michael; Dunthorn, Micah; Ekelund, Flemming; Fernández, Leonardo D.; Jousset, Alexandre; Krashevska, Valentyna; Singer, David; Spiegel, Frederick W.; Walochnik, Julia; Lara, Enrique (May 2018). "Soil protists: a fertile frontier in soil biology research". FEMS Microbiology Reviews. 42 (3): 293–323. doi:10.1093/femsre/fuy006. PMID 29447350.
Harder C, Rønn R, Brejnrod A, et al. (8 March 2016). "Local diversity of heathland Cercozoa explored by in-depth sequencing". The ISME Journal. 10 (10): 2488–2497. doi:10.1038/ismej.2016.31. PMC 5030685. PMID 26953604.
Geisen, Stefan; Koller, Robert; Hünninghaus, Maike; Dumack, Kenneth; Urich, Tim; Bonkowski, Michael (2016). "The soil food web revisited: Diverse and widespread mycophagous soil protists". Soil Biology and Biochemistry. 94: 10–18. doi:10.1016/j.soilbio.2015.11.010.
Schwelm A, Badstöber J, Bulman S, Desoignies N, Etemadi M, Falloon RE, Gachon CM, Legreve A, Lukeš J, Merz U, Nenarokova A, Strittmatter M, Sullivan BK, Neuhauser S (April 2018). "Not in your usual Top 10: protists that infect plants and algae". Molecular Plant Pathology. 19 (4): 1029–1044. doi:10.1111/mpp.12580. PMC 5772912. PMID 29024322.
Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, Dalio RJ, Roy SG, Schena L, Zambounis A, Panabières F, Cahill D, Ruocco M, Figueiredo A, Chen XR, Hulvey J, Stam R, Lamour K, Gijzen M, Tyler BM, Grünwald NJ, Mukhtar MS, Tomé DF, Tör M, Van Den Ackerveken G, McDowell J, Daayf F, Fry WE, Lindqvist-Kreuze H, Meijer HJ, Petre B, Ristaino J, Yoshida K, Birch PR, Govers F (May 2015). "The Top 10 oomycete pathogens in molecular plant pathology". Molecular Plant Pathology. 16 (4): 413–34. doi:10.1111/mpp.12190. PMC 6638381. PMID 25178392.
Campbell, N. and Reese, J. (2008) Biology. Pearson Benjamin Cummings; 8 ed. ISBN 0805368442. pp. 583, 588
Lauckner, G. (1980). "Diseases of protozoa". In: Diseases of Marine Animals. Kinne, O. (ed.). Vol. 1, p. 84, John Wiley & Sons, Chichester, UK.
Cox, F.E.G. (1991). "Systematics of parasitic protozoa". In: Kreier, J.P. & J. R. Baker (ed.). Parasitic Protozoa, 2nd ed., vol. 1. San Diego: Academic Press.
Keen EC (July 2013). "Beyond phage therapy: virotherapy of protozoal diseases". Future Microbiology. 8 (7): 821–3. doi:10.2217/FMB.13.48. PMID 23841627.
Hyman P, Atterbury R, Barrow P (May 2013). "Fleas and smaller fleas: virotherapy for parasite infections". Trends in Microbiology. 21 (5): 215–220. doi:10.1016/j.tim.2013.02.006. PMID 23540830.
Liu YJ, Hodson MC, Hall BD (September 2006). "Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes". BMC Evolutionary Biology. 6: 74. doi:10.1186/1471-2148-6-74. PMC 1599754. PMID 17010206.
"ARS Parasite Collections Assist Research and Diagnoses". USDA Agricultural Research Service. January 28, 2010.
Durham, Sharon (January 28, 2010) ARS Parasite Collections Assist Research and Diagnoses. Ars.usda.gov. Retrieved 2014-03-20.
Plattner H (2018). "Evolutionary cell biology of proteins from protists to humans and plants". J. Eukaryot. Microbiol. 65 (2): 255–289. doi:10.1111/jeu.12449. PMID 28719054. S2CID 206055044.
Levandowsky, Michael (2012). "Physiological Adaptations of Protists". In Sperelakis, Nicholas (ed.). Cell Physiology Sourcebook: Essentials of Membrane Biophysics (Fourth ed.). Amsterdam; Boston: Elsevier/AP. pp. 874–890. ISBN 978-0-12-387738-3.
Hoppenrath, M; Bachvaroff, TR; Handy, SM; Delwiche, CF; Leander, BS (25 May 2009). "Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences". BMC Evolutionary Biology. 9: 116. doi:10.1186/1471-2148-9-116. PMC 2694157. PMID 19467154.
Bernstein H, Bernstein C, Michod RE (2012). "Chapter 1. DNA repair as the primary adaptive function of sex in bacteria and eukaryotes". In Kimura S, Shimizu S (eds.). DNA Repair: New Research. Hauppauge, N.Y.: Nova Sci. Publ. pp. 1–49. ISBN 978-1-62100-808-8.
Javaux EJ, Knoll AH, Walter MR (July 2001). "Morphological and ecological complexity in early eukaryotic ecosystems". Nature. 412 (6842): 66–69. Bibcode:2001Natur.412...66J. doi:10.1038/35083562. PMID 11452306. S2CID 205018792.
Ramesh MA, Malik SB, Logsdon JM (January 2005). "A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis". Current Biology. 15 (2): 185–191. doi:10.1016/j.cub.2005.01.003. PMID 15668177. S2CID 17013247.
Cooper MA, Adam RD, Worobey M, Sterling CR (November 2007). "Population genetics provides evidence for recombination in Giardia". Current Biology. 17 (22): 1984–1988. doi:10.1016/j.cub.2007.10.020. PMID 17980591. S2CID 15991722.
Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM (August 2007). Hahn MW (ed.). "An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis". PLOS ONE. 3 (8): e2879. Bibcode:2008PLoSO...3.2879M. doi:10.1371/journal.pone.0002879. PMC 2488364. PMID 18663385.
Dacks J, Roger AJ (June 1999). "The first sexual lineage and the relevance of facultative sex". Journal of Molecular Evolution. 48 (6): 779–783. Bibcode:1999JMolE..48..779D. doi:10.1007/PL00013156. PMID 10229582. S2CID 9441768.
Lahr DJ, Parfrey LW, Mitchell EA, Katz LA, Lara E (July 2011). "The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms". Proceedings: Biological Sciences. 278 (1715): 2081–2090. doi:10.1098/rspb.2011.0289. PMC 3107637. PMID 21429931.
Dobell, C. (1909). "Chromidia and the binuclearity hypotheses: A review and a criticism" (PDF). Quarterly Journal of Microscopical Science. 53: 279–326.
"CDC – Toxoplasmosis – Biology". 17 March 2015. Retrieved 14 June 2015.
"Cat parasite linked to mental illness, schizophrenia". CBS. 5 June 2015. Retrieved 23 September 2015.
"CDC – About Parasites". Retrieved 12 March 2013.
Talman AM, Domarle O, McKenzie FE, Ariey F, Robert V (July 2004). "Gametocytogenesis: the puberty of Plasmodium falciparum". Malaria Journal. 3: 24. doi:10.1186/1475-2875-3-24. PMC 497046. PMID 15253774.
Tibayrenc M, et al. (June 1991). "Are eukaryotic microorganisms clonal or sexual? A population genetics vantage". Proceedings of the National Academy of Sciences of the United States of America. 88 (12): 5129–33. Bibcode:1991PNAS...88.5129T. doi:10.1073/pnas.88.12.5129. PMC 51825. PMID 1675793.
Akopyants NS, et al. (April 2009). "Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector". Science. 324 (5924): 265–268. Bibcode:2009Sci...324..265A. doi:10.1126/science.1169464. PMC 2729066. PMID 19359589.
Brocks, Jochen J.; Nettersheim, Benjamin J.; Adam, Pierre; Schaeffer, Philippe; Jarrett, Amber J. M.; Güneli, Nur; Liyanage, Tharika; van Maldegem, Lennart M.; Hallmann, Christian; Hope, Janet M. (2023). "Lost world of complex life and the late rise of the eukaryotic crown" (PDF). Nature. 618 (7966): 767–773. doi:10.1038/s41586-023-06170-w. PMID 37286610. S2CID 259111647.
Porter SM, Meisterfeld R, Knoll AH (May 2003). "Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae" (PDF). Journal of Paleontology. 77 (3): 409–429. doi:10.1666/0022-3360(2003)077<0409:VMFTNC>2.0.CO;2.
Parfrey LW, Lahr DJ, Knoll AH, Katz LA (August 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks". Proceedings of the National Academy of Sciences of the United States of America. 108 (33): 13624–9. Bibcode:2011PNAS..10813624P. doi:10.1073/pnas.1110633108. PMC 3158185. PMID 21810989.
Chang, Shan; Feng, Qinglai; Zhang, Lei (14 August 2018). "New Siliceous Microfossils from the Terreneuvian Yanjiahe Formation, South China: The Possible Earliest Radiolarian Fossil Record". Journal of Earth Science. 29 (4): 912–919. doi:10.1007/s12583-017-0960-0. S2CID 134890245.
Zhang, Ke; Feng, Qing-Lai (September 2019). "Early Cambrian radiolarians and sponge spicules from the Niujiaohe Formation in South China". Palaeoworld. 28 (3): 234–242. doi:10.1016/j.palwor.2019.04.001. S2CID 146452469.
Maletz, Jörg (June 2017). "The identification of putative Lower Cambrian Radiolaria". Revue de Micropaléontologie. 60 (2): 233–240. doi:10.1016/j.revmic.2017.04.001.
Bibliography
General
Hausmann, K., N. Hulsmann, R. Radek. Protistology. Schweizerbart'sche Verlagsbuchshandlung, Stuttgart, 2003.
Margulis, L., J.O. Corliss, M. Melkonian, D.J. Chapman. Handbook of Protoctista. Jones and Bartlett Publishers, Boston, 1990.
Margulis, L., K.V. Schwartz. Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth, 3rd ed. New York: W.H. Freeman, 1998.
Margulis, L., L. Olendzenski, H.I. McKhann. Illustrated Glossary of the Protoctista, 1993.
Margulis, L., M.J. Chapman. Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth. Amsterdam: Academic Press/Elsevier, 2009.
Schaechter, M. Eukaryotic microbes. Amsterdam, Academic Press, 2012.
Physiology, ecology and paleontology
Fontaneto, D. Biogeography of Microscopic Organisms. Is Everything Small Everywhere? Cambridge University Press, Cambridge, 2011.
Moore, R. C., and other editors. Treatise on Invertebrate Paleontology. Protista, part B (vol. 1[permanent dead link], Charophyta, vol. 2, Chrysomonadida, Coccolithophorida, Charophyta, Diatomacea & Pyrrhophyta), part C (Sarcodina, Chiefly "Thecamoebians" and Foraminiferida) and part D[permanent dead link] (Chiefly Radiolaria and Tintinnina). Boulder, Colorado: Geological Society of America; & Lawrence, Kansas: University of Kansas Press.
Retrieved from Wikispecies and "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License