Digital printout of an agarose gel electrophoresis of cat-insert plasmid DNA (*) DNA electrophoresis is an analytical technique used to separate DNA fragments by size. DNA molecules which are to be analyzed are set upon a viscous medium, the gel, where an electric field forces the DNA to migrate toward the positive potential, the anode, due to the net negative charge of the phosphate backbone of the DNA chain. The separation of these fragments is accomplished by exploiting the mobilities with which different sized molecules are able to traverse the gel. Longer molecules migrate more slowly because they experience more drag within the gel. Because the size of the molecule affects its mobility, smaller fragments end up nearer to the anode than longer ones in a given period. After some time, the voltage is removed and the fragmentation gradient is analyzed. For larger separations between similar sized fragments, either the voltage or run time can be increased. Extended runs across a low voltage gel yield the most accurate resolution. The DNA analyzed by gel electrophoresis can be prepared in several ways before separation by electrophoresis. In the case of large DNA molecules, the DNA is frequently cut into smaller fragments using a DNA restriction endonuclease. In other instances, such as PCR amplified samples, enzymes present in the sample that might affect the separation of the molecules are removed through various means before analysis. Once the DNA is properly prepared, the samples of the DNA solution are placed in the wells of the gel and a voltage is applied across the gel for a specified amount of time. The DNA fragments of different lengths are visualized using a fluorescent dye specific for DNA, such as ethidium bromide. The gel shows bands corresponding to different DNA molecules populations with different molecular weight. Fragment size is usually reported in "nucleotides", "base pairs" or "kb" (for thousands of base pairs) depending upon whether single- or double-stranded DNA has been separated. Fragment size determination is typically done by comparison to commercially available DNA ladders containing linear DNA fragments of known length. The types of gel most commonly used for DNA electrophoresis are agarose (for relatively long DNA molecules) and polyacrylamide (for high resolution of short DNA molecules, for example in DNA sequencing). Gels have conventionally been run in a "slab" format such as that shown in the figure, but capillary electrophoresis has become important for applications such as high-throughput DNA sequencing. Electrophoresis techniques used in the assessment of DNA damage include alkaline gel electrophoresis and pulsed field gel electrophoresis. The measurement and analysis are mostly done with a specialized gel analysis software. Capillary electrophoresis results are typically displayed in a trace view called an electropherogram. Retrieved from "http://en.wikipedia.org/"
|