Fine Art

Superregnum: Eukaryota
Cladus: Unikonta
Cladus: Opisthokonta
Cladus: Holozoa
Regnum: Animalia
Subregnum: Eumetazoa
Cladus: Bilateria
Cladus: Nephrozoa
Cladus: Protostomia
Cladus: Ecdysozoa
Cladus: Panarthropoda
Phylum: Arthropoda
Subphylum: Myriapoda
Classis: Symphyla
Ordo: not divided
Familiae: Scolopendrellidae - Scutigerellidae
Genera Incertae Sedis: Remysymphyla

Name

Symphyla Ryder, 1880
References

Johns, P.M. 2010: 7. Phylum Arthropoda Myriapoda: centipedes, millipedes, pauropods, and symphylans. Pp. 90-97 in: Gordon, D.P. (ed.) 2010. New Zealand inventory of biodiversity. Volume 2. Kingdom Animalia. Chaetognatha, Ecdysozoa, ichnofossils. Canterbury University Press, Christchurch, New Zealand. Reference page. Reference page.
Minelli, A. 2011. Class Chilopoda, Class Symphyla and Class Pauropoda. Pp 157–158 In Zhang, Z.-Q. (ed.) 2011. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148: 1–237. Open access. Reference page. . (PDF) Reference page.
Ryder, A.S. 1880: Scolopendrella as the type of a new order of Articulates (Symphyla). American Naturalist, 14 (5): 375–376

Vernacular names
беларуская: Сімфілы
suomi: Sokkojuoksiaiset
polski: Drobnonogi
português: Sínfilos
தமிழ்: சிம்பைலா

Symphylans, also known as garden centipedes or pseudocentipedes, are soil-dwelling arthropods of the class Symphyla in the subphylum Myriapoda. Symphylans resemble centipedes, but are very small, non-venomous, and only distantly related to both centipedes and millipedes. They can move rapidly through the pores between soil particles, and are typically found from the surface down to a depth of about 50 centimetres (20 in). They consume decaying vegetation, but can do considerable harm in an agricultural setting by consuming seeds, roots, and root hairs in cultivated soil.

Juveniles have six pairs of legs, but over a lifetime of several years, they add an additional pair at each moult so an adult instar usually has twelve pairs of legs.[1][2] Most adult symphylans have twelve leg pairs, but the first pair is absent or vestigial in some species (e.g., those in the genus Symphylella), so adults in a few species have only eleven leg pairs.[3][4] Symphylans lack eyes. Their long antennae serve as sense organs. They have several features linking them to early insects, such as a labium (fused second maxillae), an identical number of head segments and certain features of their legs.[5]

About 200 species are known worldwide.[6]
Description

Symphyla are small, cryptic myriapods without eyes and without pigment.[7] The body is soft and generally 2 to 10 millimetres (0.08 to 0.4 in) long, divided into two body regions: head and trunk.[7] An exceptional size is reached in Hanseniella magna, which attains lengths of 25 to 30 mm (1.0 to 1.2 in).[8]

The head has long, segmented antennae, a postantennal organ, three pairs of mouthparts: mandibles, the long first maxillae, and the second pair of maxillae which are fused to form the lower lip or labium of the mouth. Disc-like organs of Tömösváry, which probably sense vibrations, are attached to the base of the antennae, as they are in centipedes.[9]

The trunk comprises 15–24 segments, which are protected by overlapping dorsal plates. Ten or twelve segments bear legs. The first segment is large and usually provided with a pair of legs, the last segment is slender, lacks legs, and possesses a pair of cerci. Immature individuals have six pairs of legs on hatching. Each pair of legs is associated with an eversible structure, called a "coxal sac", that helps the animal absorb moisture, and a small stylus that may be sensory in function. Similar structures are found in the most primitive insects.[9]

Symphyla are rapid runners.[7] They are primarily herbivores and detritus feeders living deep in the soil, under stones, in decaying wood, and in other moist places.[7] The garden symphylan, Scutigerella immaculata can be a pest of crops. A species of Hanseniella has been recorded as a pest of sugar cane and pineapples in Queensland.[10][11] A few species are found in trees[12][13] and in caves.[14] A species of Symphylella has been shown to be predominantly predatory,[15] and some species are saprophagous.
Life stages of symphylans: eggs, juvenile, and adult Scutigerella immaculata

Symphylans breathe through a pair of spiracles on the sides of their head, and are the only arthropods with spiracle openings on the head.[16] These are connected to a system of tracheae that branch through the head and the first three segments of the body only.[9]

The genital openings are located on the fourth body segment, but the animals do not copulate. Instead, the male deposits 150 to 450 packages of sperm, or spermatophores, on small stalks. The female then picks these up in her mouth, which contains special pouches for storing the sperm. She then lays her eggs, and attaches them to the sides of crevices or to moss or lichen with her mouth, smearing the sperm over them as she does so. The eggs are laid in groups of eight to twelve.[9]

Symphylans have been reported as living up to four years, and moult throughout their life.[9]
Fossil record and evolution

The symphylan fossil record is poorly known, with only five species recorded, all placed in living genera. The oldest records of both families are found in Burmese amber from the middle Cretaceous, approximately 99 million years ago. As a result, both families are thought to have diverged before the end of the Mesozoic Era.[17][18][19]

Despite their common name, morphological studies commonly place symphylans as more closely related to millipedes and pauropods than the centipedes, in the clade Progoneata.[20][21] Molecular studies have shown conflicting results, with some supporting the Progoneata clade, others aligning symphylans with centipedes or other arthropods, although some are weakly supported.[22][20]
References

"Garden Symphylans". Integrated Pest Management on Peppermint-IPMP3.0. Oregon State University. Archived from the original on 2007-08-03. Retrieved 2007-07-02.
"Symphylans". Entry: Symphylans. Encyclopedia of Arkansas. Retrieved 2021-05-29.
Szucsich, Nikola; Scheller, Ulf (2011). "Symphyla". In Minelli, Alessandro (ed.). The Myriapoda. Volume 1. Leiden: Brill. pp. 445–466. ISBN 978-90-04-18826-6. OCLC 812207443.
Minelli, Alessandro; Golovatch, Sergei I. (2013-01-01), "Myriapods", in Levin, Simon A (ed.), Encyclopedia of Biodiversity (Second Edition), Waltham: Academic Press, pp. 421–432, doi:10.1016/b978-0-12-384719-5.00208-2, ISBN 978-0-12-384720-1, retrieved 2022-02-28
C. Gillott (2005). Entomology, 3rd Edition. Springer Verlag. ISBN 978-1-4020-3182-3.
A. D. Chapman (2005). Numbers of Living Species in Australia and the World (PDF). Department of the Environment and Heritage. ISBN 978-0-642-56850-2. Archived from the original (PDF) on 2009-09-26.
Penny Greenslade (2002-03-31). "Class: Symphyla". Australian Faunal Directory. Australian National University. Archived from the original on 2015-09-24.
Minelli, Alessandro; Sergei I. Golovatch (2001). "Myriapods" (PDF). In Simon A. Levin (ed.). Encyclopedia of Biodiversity. pp. 291–303. ISBN 978-0122268656. Archived from the original (PDF) on 2014-02-21.
Barnes, Robert D. (1982). Invertebrate Zoology. Philadelphia, PA: Holt-Saunders International. pp. 817–818. ISBN 978-0-03-056747-6.
H. Boyle (1981). "Symphyla control in young plant cane". Cane Growers' Quarterly Bulletin. 44: 115–116.
D. A. H. Murray & D. Smith (1983). "Effect of Symphyla, Hanseniella sp., on establishment of pineappes in south-east Queensland". Queensland Journal of Agricultural Science. 40: 121–123.
J. Adis & U. Scheller (1984). "On the natural history and ecology of Hanseniella arborea (Myriapoda, Symphyla, Scutigerellidae), a migrating symphylan from an Amazonian black-water inundation forest". Pedobiologia. 27: 35–41.
S. Clark & P. Greenslade (1996). "Review of Tasmanian Hanseniella Bagnall (Symphyla: Scutigerellidae)". Invertebrate Taxonomy. 10 (1): 189–212. doi:10.1071/IT9960189.
Eberhard, S.M. & Spate (1995). "Cave Invertebrate Survey; toward an atlas of NSW Cave Fauna". A Report Prepared Under NSW Heritage Assistance Program NEP. 94: 765.
D. E. Walter, J. C. Moore & S. Loring (1989). "Symphylella sp. (Symphyla: Scolopendrellidae predators of arthropods and nematodes in grassland soils". Pedobiologia. 33: 113–116.
BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS - Volum III
Moritz, Leif; Wesener, Thomas (2017). "Symphylella patrickmuelleri sp. nov. (Myriapoda: Symphyla): The oldest known Symphyla and first fossil record of Scolopendrellidae from Cretaceous Burmese amber". Cretaceous Research. 84: 258–263. doi:10.1016/j.cretres.2017.11.018.
Minelli, Alessandro (2011). Treatise on Zoology - Anatomy, Taxonomy, Biology. The Myriapoda. BRILL. p. 459. ISBN 978-90-04-15611-1.
Wesener, Thomas; Moritz, Leif (2018-12-17). "Checklist of the Myriapoda in Cretaceous Burmese amber and a correction of the Myriapoda identified by Zhang (2017)". Check List. 14 (6): 1131–1140. doi:10.15560/14.6.1131. ISSN 1809-127X.
Shear, William A.; Edgecombe, Gregory D. (2010). "The geological record and phylogeny of the Myriapoda". Arthropod Structure & Development. 39 (2–3): 174–190. doi:10.1016/j.asd.2009.11.002. PMID 19944188.
Gai, Yonghua; Song, Daxiang; Sun, Hongying; Yang, Qun; Zhou, Kaiya (2008). "The complete mitochondrial genome of Symphylella sp. (Myriapoda: Symphyla): Extensive gene order rearrangement and evidence in favor of Progoneata". Molecular Phylogenetics and Evolution. 49 (2): 574–585. doi:10.1016/j.ympev.2008.08.010. PMID 18782622.

Regier, Jerome C.; Wilson, Heather M.; Shultz, Jeffrey W. (2005). "Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes". Molecular Phylogenetics and Evolution. 34 (1): 147–158. doi:10.1016/j.ympev.2004.09.005. PMID 15579388.

Further reading
C. A. Edwards (1990). "Symphyla". In Daniel L. Dindal (ed.). Soil Biology Guide. New York: Wiley. pp. 891–910. ISBN 978-0-471-04551-9.
U. Scheller (1961). "A review of the Australian Symphyla (Myriapoda)". Australian Journal of Zoology. 9 (1): 140–171. doi:10.1071/ZO9610140.
U. Scheller (1982). "Symphyla". In Sybil P. Parker (ed.). Synopsis and Classification of Living Organisms. New York: McGraw-Hill. pp. 688–689. ISBN 978-0-07-079031-5.
R. J. Tillyard (1930). "The evolution of the class Insecta". Papers and Proceedings of the Royal Society of Tasmania. 1930: 1–89.

Images

Biology Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World