Hellenica World

# Truncated icosidodecahedron

In[73]:=

Out[73]=

In[87]:=

Out[87]=

In[81]:=

Out[81]=

In[83]:=

Out[83]=

In[84]:=

Out[84]=

In[74]:=

Out[74]=

In[75]:=

Out[75]=

In[76]:=

Out[76]=

In[77]:=

Out[77]//InputForm=

Graphics3D[GraphicsComplex[{{-1, (-3 - Sqrt[5])/4, (-7 - 3*Sqrt[5])/4}, {-1, (-3 - Sqrt[5])/4, (7 + 3*Sqrt[5])/4}, {-1, (3 + Sqrt[5])/4, (-7 - 3*Sqrt[5])/4},
{-1, (3 + Sqrt[5])/4, (7 + 3*Sqrt[5])/4}, {-1/2, -1/2, -3/2 - Sqrt[5]}, {-1/2, -1/2, 3/2 + Sqrt[5]}, {-1/2, 1/2, -3/2 - Sqrt[5]}, {-1/2, 1/2, 3/2 + Sqrt[5]},
{-1/2, -3/2 - Sqrt[5], -1/2}, {-1/2, -3/2 - Sqrt[5], 1/2}, {-1/2, -1 - Sqrt[5]/2, -2 - Sqrt[5]/2}, {-1/2, -1 - Sqrt[5]/2, (4 + Sqrt[5])/2}, {-1/2, 3/2 + Sqrt[5], -1/2},
{-1/2, 3/2 + Sqrt[5], 1/2}, {-1/2, (2 + Sqrt[5])/2, -2 - Sqrt[5]/2}, {-1/2, (2 + Sqrt[5])/2, (4 + Sqrt[5])/2}, {1/2, -1/2, -3/2 - Sqrt[5]}, {1/2, -1/2, 3/2 + Sqrt[5]},
{1/2, 1/2, -3/2 - Sqrt[5]}, {1/2, 1/2, 3/2 + Sqrt[5]}, {1/2, -3/2 - Sqrt[5], -1/2}, {1/2, -3/2 - Sqrt[5], 1/2}, {1/2, -1 - Sqrt[5]/2, -2 - Sqrt[5]/2},
{1/2, -1 - Sqrt[5]/2, (4 + Sqrt[5])/2}, {1/2, 3/2 + Sqrt[5], -1/2}, {1/2, 3/2 + Sqrt[5], 1/2}, {1/2, (2 + Sqrt[5])/2, -2 - Sqrt[5]/2},
{1/2, (2 + Sqrt[5])/2, (4 + Sqrt[5])/2}, {1, (-3 - Sqrt[5])/4, (-7 - 3*Sqrt[5])/4}, {1, (-3 - Sqrt[5])/4, (7 + 3*Sqrt[5])/4}, {1, (3 + Sqrt[5])/4, (-7 - 3*Sqrt[5])/4},
{1, (3 + Sqrt[5])/4, (7 + 3*Sqrt[5])/4}, {(-7 - 3*Sqrt[5])/4, -1, (-3 - Sqrt[5])/4}, {(-7 - 3*Sqrt[5])/4, -1, (3 + Sqrt[5])/4}, {(-7 - 3*Sqrt[5])/4, 1, (-3 - Sqrt[5])/4},
{(-7 - 3*Sqrt[5])/4, 1, (3 + Sqrt[5])/4}, {(-5 - 3*Sqrt[5])/4, (-5 - Sqrt[5])/4, (-1 - Sqrt[5])/2}, {(-5 - 3*Sqrt[5])/4, (-5 - Sqrt[5])/4, (1 + Sqrt[5])/2},
{(-5 - 3*Sqrt[5])/4, (5 + Sqrt[5])/4, (-1 - Sqrt[5])/2}, {(-5 - 3*Sqrt[5])/4, (5 + Sqrt[5])/4, (1 + Sqrt[5])/2}, {(-5 - Sqrt[5])/4, (-1 - Sqrt[5])/2, (-5 - 3*Sqrt[5])/4},
{(-5 - Sqrt[5])/4, (-1 - Sqrt[5])/2, (5 + 3*Sqrt[5])/4}, {(-5 - Sqrt[5])/4, (1 + Sqrt[5])/2, (-5 - 3*Sqrt[5])/4}, {(-5 - Sqrt[5])/4, (1 + Sqrt[5])/2, (5 + 3*Sqrt[5])/4},
{(-3 - Sqrt[5])/4, (-7 - 3*Sqrt[5])/4, -1}, {(-3 - Sqrt[5])/4, (-7 - 3*Sqrt[5])/4, 1}, {(-3 - Sqrt[5])/4, (-3*(1 + Sqrt[5]))/4, (-3 - Sqrt[5])/2},
{(-3 - Sqrt[5])/4, (-3*(1 + Sqrt[5]))/4, (3 + Sqrt[5])/2}, {(-3 - Sqrt[5])/4, (3*(1 + Sqrt[5]))/4, (-3 - Sqrt[5])/2},
{(-3 - Sqrt[5])/4, (3*(1 + Sqrt[5]))/4, (3 + Sqrt[5])/2}, {(-3 - Sqrt[5])/4, (7 + 3*Sqrt[5])/4, -1}, {(-3 - Sqrt[5])/4, (7 + 3*Sqrt[5])/4, 1},
{(-3 - Sqrt[5])/2, (-3 - Sqrt[5])/4, (-3*(1 + Sqrt[5]))/4}, {(-3 - Sqrt[5])/2, (-3 - Sqrt[5])/4, (3*(1 + Sqrt[5]))/4},
{(-3 - Sqrt[5])/2, (3 + Sqrt[5])/4, (-3*(1 + Sqrt[5]))/4}, {(-3 - Sqrt[5])/2, (3 + Sqrt[5])/4, (3*(1 + Sqrt[5]))/4}, {-3/2 - Sqrt[5], -1/2, -1/2},
{-3/2 - Sqrt[5], -1/2, 1/2}, {-3/2 - Sqrt[5], 1/2, -1/2}, {-3/2 - Sqrt[5], 1/2, 1/2}, {(-1 - Sqrt[5])/2, (-5 - 3*Sqrt[5])/4, (-5 - Sqrt[5])/4},
{(-1 - Sqrt[5])/2, (-5 - 3*Sqrt[5])/4, (5 + Sqrt[5])/4}, {(-1 - Sqrt[5])/2, (5 + 3*Sqrt[5])/4, (-5 - Sqrt[5])/4}, {(-1 - Sqrt[5])/2, (5 + 3*Sqrt[5])/4, (5 + Sqrt[5])/4},
{-2 - Sqrt[5]/2, -1/2, -1 - Sqrt[5]/2}, {-2 - Sqrt[5]/2, -1/2, (2 + Sqrt[5])/2}, {-2 - Sqrt[5]/2, 1/2, -1 - Sqrt[5]/2}, {-2 - Sqrt[5]/2, 1/2, (2 + Sqrt[5])/2},
{-1 - Sqrt[5]/2, -2 - Sqrt[5]/2, -1/2}, {-1 - Sqrt[5]/2, -2 - Sqrt[5]/2, 1/2}, {-1 - Sqrt[5]/2, (4 + Sqrt[5])/2, -1/2}, {-1 - Sqrt[5]/2, (4 + Sqrt[5])/2, 1/2},
{(-3*(1 + Sqrt[5]))/4, (-3 - Sqrt[5])/2, (-3 - Sqrt[5])/4}, {(-3*(1 + Sqrt[5]))/4, (-3 - Sqrt[5])/2, (3 + Sqrt[5])/4},
{(-3*(1 + Sqrt[5]))/4, (3 + Sqrt[5])/2, (-3 - Sqrt[5])/4}, {(-3*(1 + Sqrt[5]))/4, (3 + Sqrt[5])/2, (3 + Sqrt[5])/4},
{(1 + Sqrt[5])/2, (-5 - 3*Sqrt[5])/4, (-5 - Sqrt[5])/4}, {(1 + Sqrt[5])/2, (-5 - 3*Sqrt[5])/4, (5 + Sqrt[5])/4}, {(1 + Sqrt[5])/2, (5 + 3*Sqrt[5])/4, (-5 - Sqrt[5])/4},
{(1 + Sqrt[5])/2, (5 + 3*Sqrt[5])/4, (5 + Sqrt[5])/4}, {(3*(1 + Sqrt[5]))/4, (-3 - Sqrt[5])/2, (-3 - Sqrt[5])/4}, {(3*(1 + Sqrt[5]))/4, (-3 - Sqrt[5])/2, (3 + Sqrt[5])/4},
{(3*(1 + Sqrt[5]))/4, (3 + Sqrt[5])/2, (-3 - Sqrt[5])/4}, {(3*(1 + Sqrt[5]))/4, (3 + Sqrt[5])/2, (3 + Sqrt[5])/4}, {3/2 + Sqrt[5], -1/2, -1/2}, {3/2 + Sqrt[5], -1/2, 1/2},
{3/2 + Sqrt[5], 1/2, -1/2}, {3/2 + Sqrt[5], 1/2, 1/2}, {(2 + Sqrt[5])/2, -2 - Sqrt[5]/2, -1/2}, {(2 + Sqrt[5])/2, -2 - Sqrt[5]/2, 1/2},
{(2 + Sqrt[5])/2, (4 + Sqrt[5])/2, -1/2}, {(2 + Sqrt[5])/2, (4 + Sqrt[5])/2, 1/2}, {(3 + Sqrt[5])/4, (-7 - 3*Sqrt[5])/4, -1}, {(3 + Sqrt[5])/4, (-7 - 3*Sqrt[5])/4, 1},
{(3 + Sqrt[5])/4, (-3*(1 + Sqrt[5]))/4, (-3 - Sqrt[5])/2}, {(3 + Sqrt[5])/4, (-3*(1 + Sqrt[5]))/4, (3 + Sqrt[5])/2},
{(3 + Sqrt[5])/4, (3*(1 + Sqrt[5]))/4, (-3 - Sqrt[5])/2}, {(3 + Sqrt[5])/4, (3*(1 + Sqrt[5]))/4, (3 + Sqrt[5])/2}, {(3 + Sqrt[5])/4, (7 + 3*Sqrt[5])/4, -1},
{(3 + Sqrt[5])/4, (7 + 3*Sqrt[5])/4, 1}, {(3 + Sqrt[5])/2, (-3 - Sqrt[5])/4, (-3*(1 + Sqrt[5]))/4}, {(3 + Sqrt[5])/2, (-3 - Sqrt[5])/4, (3*(1 + Sqrt[5]))/4},
{(3 + Sqrt[5])/2, (3 + Sqrt[5])/4, (-3*(1 + Sqrt[5]))/4}, {(3 + Sqrt[5])/2, (3 + Sqrt[5])/4, (3*(1 + Sqrt[5]))/4}, {(4 + Sqrt[5])/2, -1/2, -1 - Sqrt[5]/2},
{(4 + Sqrt[5])/2, -1/2, (2 + Sqrt[5])/2}, {(4 + Sqrt[5])/2, 1/2, -1 - Sqrt[5]/2}, {(4 + Sqrt[5])/2, 1/2, (2 + Sqrt[5])/2},
{(5 + Sqrt[5])/4, (-1 - Sqrt[5])/2, (-5 - 3*Sqrt[5])/4}, {(5 + Sqrt[5])/4, (-1 - Sqrt[5])/2, (5 + 3*Sqrt[5])/4}, {(5 + Sqrt[5])/4, (1 + Sqrt[5])/2, (-5 - 3*Sqrt[5])/4},
{(5 + Sqrt[5])/4, (1 + Sqrt[5])/2, (5 + 3*Sqrt[5])/4}, {(5 + 3*Sqrt[5])/4, (-5 - Sqrt[5])/4, (-1 - Sqrt[5])/2}, {(5 + 3*Sqrt[5])/4, (-5 - Sqrt[5])/4, (1 + Sqrt[5])/2},
{(5 + 3*Sqrt[5])/4, (5 + Sqrt[5])/4, (-1 - Sqrt[5])/2}, {(5 + 3*Sqrt[5])/4, (5 + Sqrt[5])/4, (1 + Sqrt[5])/2}, {(7 + 3*Sqrt[5])/4, -1, (-3 - Sqrt[5])/4},
{(7 + 3*Sqrt[5])/4, -1, (3 + Sqrt[5])/4}, {(7 + 3*Sqrt[5])/4, 1, (-3 - Sqrt[5])/4}, {(7 + 3*Sqrt[5])/4, 1, (3 + Sqrt[5])/4}},
Polygon[{{2, 6, 8, 4, 44, 56, 68, 66, 54, 42}, {109, 29, 17, 19, 31, 111, 103, 107, 105, 101}, {24, 30, 18, 6, 2, 12}, {7, 3, 15, 27, 31, 19},
{58, 57, 33, 37, 73, 69, 70, 74, 38, 34}, {84, 116, 120, 88, 87, 119, 115, 83, 91, 92}, {90, 89, 81, 113, 117, 85, 86, 118, 114, 82},
{36, 40, 76, 72, 71, 75, 39, 35, 59, 60}, {5, 17, 29, 23, 11, 1}, {4, 8, 20, 32, 28, 16}, {67, 55, 43, 3, 7, 5, 1, 41, 53, 65},
{18, 30, 110, 102, 106, 108, 104, 112, 32, 20}, {79, 83, 115, 103, 111, 97}, {38, 74, 62, 48, 42, 54}, {4, 16, 50, 44}, {23, 29, 109, 95}, {96, 110, 30, 24},
{43, 49, 15, 3}, {53, 41, 47, 61, 73, 37}, {98, 112, 104, 116, 84, 80}, {69, 45, 9, 10, 46, 70}, {26, 100, 92, 91, 99, 25}, {82, 114, 102, 110, 96, 78},
{55, 39, 75, 63, 49, 43}, {1, 11, 47, 41}, {28, 32, 112, 98}, {61, 47, 11, 23, 95, 77, 93, 21, 9, 45}, {50, 16, 28, 98, 80, 100, 26, 14, 52, 64}, {97, 111, 31, 27},
{42, 48, 12, 2}, {44, 50, 64, 76, 40, 56}, {77, 95, 109, 101, 113, 81}, {63, 51, 13, 25, 99, 79, 97, 27, 15, 49}, {46, 10, 22, 94, 78, 96, 24, 12, 48, 62},
{52, 14, 13, 51, 71, 72}, {22, 21, 93, 89, 90, 94}, {115, 119, 107, 103}, {34, 38, 54, 66}, {71, 51, 63, 75}, {94, 90, 82, 78}, {114, 118, 106, 102}, {35, 39, 55, 67},
{70, 46, 62, 74}, {99, 91, 83, 79}, {65, 53, 37, 33}, {104, 108, 120, 116}, {77, 81, 89, 93}, {76, 64, 52, 72}, {59, 35, 67, 65, 33, 57}, {106, 118, 86, 88, 120, 108},
{68, 56, 40, 36}, {101, 105, 117, 113}, {80, 84, 92, 100}, {73, 61, 45, 69}, {34, 66, 68, 36, 60, 58}, {105, 107, 119, 87, 85, 117}, {7, 19, 17, 5}, {6, 18, 20, 8},
{14, 26, 25, 13}, {9, 21, 22, 10}, {58, 60, 59, 57}, {85, 87, 88, 86}}]]]

In[78]:=

Out[78]=

In[79]:=

Out[79]=

In[80]:=

Out[80]=

In[85]:=

Out[85]=

Index

Scientific Library - Scientificlib.com