Hellenica World

Pentagonal rotunda

In[916]:=

"PentagonalRotunda_2.gif"

Out[916]=

"PentagonalRotunda_3.gif"

In[917]:=

"PentagonalRotunda_4.gif"

Out[917]=

"PentagonalRotunda_5.gif"

In[918]:=

"PentagonalRotunda_6.gif"

Out[918]=

"PentagonalRotunda_7.gif"

In[919]:=

"PentagonalRotunda_8.gif"

Out[919]=

"PentagonalRotunda_9.gif"

In[920]:=

"PentagonalRotunda_10.gif"

Out[920]=

"PentagonalRotunda_11.gif"

In[921]:=

"PentagonalRotunda_12.gif"

Out[921]=

"PentagonalRotunda_13.gif"

In[922]:=

"PentagonalRotunda_14.gif"

Out[922]=

"PentagonalRotunda_15.gif"

In[923]:=

"PentagonalRotunda_16.gif"

Out[923]=

"PentagonalRotunda_17.gif"

In[924]:=

"PentagonalRotunda_18.gif"

Out[924]//InputForm=

Graphics3D[GraphicsComplex[{{0, (-1 - Sqrt[5])/2, -Sqrt[5/32 + 11/(32*Sqrt[5])]},
   {0, (1 + Sqrt[5])/2, -Sqrt[5/32 + 11/(32*Sqrt[5])]}, {-Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4,
    -Sqrt[5/32 + 11/(32*Sqrt[5])]}, {-Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, -Sqrt[5/32 + 11/(32*Sqrt[5])]},
   {Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, -Sqrt[5/32 + 11/(32*Sqrt[5])]},
   {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, -Sqrt[5/32 + 11/(32*Sqrt[5])]},
   {-Sqrt[5/4 + Sqrt[5]/2], -1/2, -Sqrt[5/32 + 11/(32*Sqrt[5])]}, {-Sqrt[5/4 + Sqrt[5]/2], 1/2,
    -Sqrt[5/32 + 11/(32*Sqrt[5])]}, {Sqrt[5/4 + Sqrt[5]/2], -1/2, -Sqrt[5/32 + 11/(32*Sqrt[5])]},
   {Sqrt[5/4 + Sqrt[5]/2], 1/2, -Sqrt[5/32 + 11/(32*Sqrt[5])]}, {Sqrt[(5 + 2*Sqrt[5])/5], 0,
    -Sqrt[5/32 + 11/(32*Sqrt[5])] + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {Sqrt[1/8 + 1/(8*Sqrt[5])], (-3 - Sqrt[5])/4,
    -Sqrt[5/32 + 11/(32*Sqrt[5])] + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {Sqrt[1/8 + 1/(8*Sqrt[5])], (3 + Sqrt[5])/4,
    -Sqrt[5/32 + 11/(32*Sqrt[5])] + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {-Sqrt[5/8 + 11/(8*Sqrt[5])],
    (-1 - Sqrt[5])/4, -Sqrt[5/32 + 11/(32*Sqrt[5])] + Sqrt[1/2 + 1/(2*Sqrt[5])]},
   {-Sqrt[5/8 + 11/(8*Sqrt[5])], (1 + Sqrt[5])/4, -Sqrt[5/32 + 11/(32*Sqrt[5])] + Sqrt[1/2 + 1/(2*Sqrt[5])]},
   {-Sqrt[1/2 + 1/(2*Sqrt[5])], 0, -Sqrt[5/32 + 11/(32*Sqrt[5])] + Sqrt[(5 + 2*Sqrt[5])/5]},
   {-Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4, -Sqrt[5/32 + 11/(32*Sqrt[5])] + Sqrt[(5 + 2*Sqrt[5])/5]},
   {-Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4, -Sqrt[5/32 + 11/(32*Sqrt[5])] + Sqrt[(5 + 2*Sqrt[5])/5]},
   {Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, -Sqrt[5/32 + 11/(32*Sqrt[5])] + Sqrt[(5 + 2*Sqrt[5])/5]},
   {Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, -Sqrt[5/32 + 11/(32*Sqrt[5])] + Sqrt[(5 + 2*Sqrt[5])/5]}},
  Polygon[{{18, 16, 17, 19, 20}, {15, 16, 18}, {14, 17, 16}, {12, 19, 17}, {11, 20, 19}, {13, 18, 20},
    {6, 2, 13}, {4, 8, 15}, {7, 3, 14}, {1, 5, 12}, {9, 10, 11}, {2, 4, 15, 18, 13}, {8, 7, 14, 16, 15},
    {3, 1, 12, 17, 14}, {5, 9, 11, 19, 12}, {10, 6, 13, 20, 11}, {10, 9, 5, 1, 3, 7, 8, 4, 2, 6}}]]]

In[925]:=

"PentagonalRotunda_19.gif"

Out[925]=

"PentagonalRotunda_20.gif"

In[926]:=

"PentagonalRotunda_21.gif"

Out[926]=

"PentagonalRotunda_22.gif"

In[927]:=

"PentagonalRotunda_23.gif"

Out[927]=

"PentagonalRotunda_24.gif"

Johnson Polyhedra

Geometry

Index

Scientific Library - Scientificlib.com