Hellenica World

Pentagonal orthocupolarotunda

In[904]:=

"PentagonalOrthocupolarotunda_3.gif"

Out[904]=

"PentagonalOrthocupolarotunda_4.gif"

In[905]:=

"PentagonalOrthocupolarotunda_5.gif"

Out[905]=

"PentagonalOrthocupolarotunda_6.gif"

In[906]:=

"PentagonalOrthocupolarotunda_7.gif"

Out[906]=

"PentagonalOrthocupolarotunda_8.gif"

In[907]:=

"PentagonalOrthocupolarotunda_9.gif"

Out[907]=

"PentagonalOrthocupolarotunda_10.gif"

In[908]:=

"PentagonalOrthocupolarotunda_11.gif"

Out[908]=

"PentagonalOrthocupolarotunda_12.gif"

In[909]:=

"PentagonalOrthocupolarotunda_13.gif"

Out[909]=

"PentagonalOrthocupolarotunda_14.gif"

In[910]:=

"PentagonalOrthocupolarotunda_15.gif"

Out[910]=

"PentagonalOrthocupolarotunda_16.gif"

In[911]:=

"PentagonalOrthocupolarotunda_17.gif"

Out[911]=

"PentagonalOrthocupolarotunda_18.gif"

In[912]:=

"PentagonalOrthocupolarotunda_19.gif"

Out[912]//InputForm=

Graphics3D[GraphicsComplex[{{0, (-1 - Sqrt[5])/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8},
   {0, (1 + Sqrt[5])/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8}, {Sqrt[1/8 + 1/(8*Sqrt[5])], (-3 - Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {Sqrt[1/8 + 1/(8*Sqrt[5])], (3 + Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 - Sqrt[(5 - Sqrt[5])/10]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[(5 + 2*Sqrt[5])/5]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 - Sqrt[(5 - Sqrt[5])/10]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[(5 + 2*Sqrt[5])/5]}, {-Sqrt[1/2 + 1/(2*Sqrt[5])], 0,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 - Sqrt[(5 - Sqrt[5])/10]}, {-Sqrt[1/2 + 1/(2*Sqrt[5])], 0,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[(5 + 2*Sqrt[5])/5]}, {-Sqrt[5/8 + 11/(8*Sqrt[5])], (-1 - Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {-Sqrt[5/8 + 11/(8*Sqrt[5])], (1 + Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {-Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 - Sqrt[(5 - Sqrt[5])/10]}, {-Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[(5 + 2*Sqrt[5])/5]}, {-Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 - Sqrt[(5 - Sqrt[5])/10]}, {-Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[(5 + 2*Sqrt[5])/5]}, {-Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8}, {-Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, (-9*Sqrt[1 - 2/Sqrt[5]])/8},
   {Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, (-9*Sqrt[1 - 2/Sqrt[5]])/8},
   {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, (-9*Sqrt[1 - 2/Sqrt[5]])/8},
   {-Sqrt[5/4 + Sqrt[5]/2], -1/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8}, {-Sqrt[5/4 + Sqrt[5]/2], 1/2,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8}, {Sqrt[5/4 + Sqrt[5]/2], -1/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8},
   {Sqrt[5/4 + Sqrt[5]/2], 1/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8}, {Sqrt[(5 + 2*Sqrt[5])/5], 0,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[1/2 + 1/(2*Sqrt[5])]}},
  Polygon[{{16, 10, 14, 6, 8}, {12, 10, 16}, {11, 14, 10}, {3, 6, 14}, {25, 8, 6}, {4, 16, 8}, {20, 2, 4},
    {18, 22, 12}, {21, 17, 11}, {1, 19, 3}, {23, 24, 25}, {2, 18, 12, 16, 4}, {22, 21, 11, 10, 12},
    {17, 1, 3, 14, 11}, {19, 23, 25, 6, 3}, {24, 20, 4, 8, 25}, {5, 13, 9, 15, 7}, {2, 20, 7, 15},
    {22, 18, 15, 9}, {17, 21, 9, 13}, {19, 1, 13, 5}, {24, 23, 5, 7}, {7, 20, 24}, {15, 18, 2}, {9, 21, 22},
    {13, 1, 17}, {5, 23, 19}}]]]

In[913]:=

"PentagonalOrthocupolarotunda_20.gif"

Out[913]=

"PentagonalOrthocupolarotunda_21.gif"

In[914]:=

"PentagonalOrthocupolarotunda_22.gif"

Out[914]=

"PentagonalOrthocupolarotunda_23.gif"

In[915]:=

"PentagonalOrthocupolarotunda_24.gif"

Out[915]=

"PentagonalOrthocupolarotunda_25.gif"

Johnson Polyhedra

Geometry

Index

Scientific Library - Scientificlib.com