Hellenica World

Pentagonal gyrocupolarotunda

In[867]:=

"PentagonalGyrocupolarotunda_2.gif"

Out[867]=

"PentagonalGyrocupolarotunda_3.gif"

In[868]:=

"PentagonalGyrocupolarotunda_4.gif"

Out[868]=

"PentagonalGyrocupolarotunda_5.gif"

In[869]:=

"PentagonalGyrocupolarotunda_6.gif"

Out[869]=

"PentagonalGyrocupolarotunda_7.gif"

In[870]:=

"PentagonalGyrocupolarotunda_8.gif"

Out[870]=

"PentagonalGyrocupolarotunda_9.gif"

In[871]:=

"PentagonalGyrocupolarotunda_10.gif"

Out[871]=

"PentagonalGyrocupolarotunda_11.gif"

In[872]:=

"PentagonalGyrocupolarotunda_12.gif"

Out[872]=

"PentagonalGyrocupolarotunda_13.gif"

In[873]:=

"PentagonalGyrocupolarotunda_14.gif"

Out[873]=

"PentagonalGyrocupolarotunda_15.gif"

In[874]:=

"PentagonalGyrocupolarotunda_16.gif"

Out[874]=

"PentagonalGyrocupolarotunda_17.gif"

In[875]:=

"PentagonalGyrocupolarotunda_18.gif"

Out[875]//InputForm=

Graphics3D[GraphicsComplex[{{0, (-1 - Sqrt[5])/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8},
   {0, (1 + Sqrt[5])/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8}, {Sqrt[1/2 + 1/(2*Sqrt[5])], 0,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 - Sqrt[(5 - Sqrt[5])/10]}, {Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 - Sqrt[(5 - Sqrt[5])/10]}, {Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 - Sqrt[(5 - Sqrt[5])/10]}, {-Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8}, {-Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, (-9*Sqrt[1 - 2/Sqrt[5]])/8},
   {Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, (-9*Sqrt[1 - 2/Sqrt[5]])/8},
   {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, (-9*Sqrt[1 - 2/Sqrt[5]])/8},
   {-Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8 - Sqrt[(5 - Sqrt[5])/10]},
   {-Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8 - Sqrt[(5 - Sqrt[5])/10]},
   {-Sqrt[5/4 + Sqrt[5]/2], -1/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8}, {-Sqrt[5/4 + Sqrt[5]/2], 1/2,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8}, {Sqrt[5/4 + Sqrt[5]/2], -1/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8},
   {Sqrt[5/4 + Sqrt[5]/2], 1/2, (-9*Sqrt[1 - 2/Sqrt[5]])/8}, {Sqrt[(5 + 2*Sqrt[5])/5], 0,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {Sqrt[1/8 + 1/(8*Sqrt[5])], (-3 - Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {Sqrt[1/8 + 1/(8*Sqrt[5])], (3 + Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {-Sqrt[5/8 + 11/(8*Sqrt[5])], (-1 - Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {-Sqrt[5/8 + 11/(8*Sqrt[5])], (1 + Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[1/2 + 1/(2*Sqrt[5])]}, {-Sqrt[1/2 + 1/(2*Sqrt[5])], 0,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[(5 + 2*Sqrt[5])/5]}, {-Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[(5 + 2*Sqrt[5])/5]}, {-Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[(5 + 2*Sqrt[5])/5]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[(5 + 2*Sqrt[5])/5]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2,
    (-9*Sqrt[1 - 2/Sqrt[5]])/8 + Sqrt[(5 + 2*Sqrt[5])/5]}},
  Polygon[{{23, 21, 22, 24, 25}, {20, 21, 23}, {19, 22, 21}, {17, 24, 22}, {16, 25, 24}, {18, 23, 25},
    {9, 2, 18}, {7, 13, 20}, {12, 6, 19}, {1, 8, 17}, {14, 15, 16}, {2, 7, 20, 23, 18}, {13, 12, 19, 21, 20},
    {6, 1, 17, 22, 19}, {8, 14, 16, 24, 17}, {15, 9, 18, 25, 16}, {3, 4, 10, 11, 5}, {7, 2, 5, 11},
    {12, 13, 11, 10}, {1, 6, 10, 4}, {14, 8, 4, 3}, {9, 15, 3, 5}, {5, 2, 9}, {11, 13, 7}, {10, 6, 12},
    {4, 8, 1}, {3, 15, 14}}]]]

In[876]:=

"PentagonalGyrocupolarotunda_19.gif"

Out[876]=

"PentagonalGyrocupolarotunda_20.gif"

In[877]:=

"PentagonalGyrocupolarotunda_21.gif"

Out[877]=

"PentagonalGyrocupolarotunda_22.gif"

In[878]:=

"PentagonalGyrocupolarotunda_23.gif"

Out[878]=

"PentagonalGyrocupolarotunda_24.gif"

Johnson Polyhedra

Geometry

Index

Scientific Library - Scientificlib.com