Hellenica World

# Pentagonal gyrobicupola

In[855]:=

Out[855]=

In[856]:=

Out[856]=

In[857]:=

Out[857]=

In[858]:=

Out[858]=

In[859]:=

Out[859]=

In[860]:=

Out[860]=

In[861]:=

Out[861]=

In[862]:=

Out[862]=

In[863]:=

Out[863]//InputForm=

Graphics3D[GraphicsComplex[{{0, (-1 - Sqrt[5])/2, 0}, {0, (1 + Sqrt[5])/2, 0},
{-Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, Sqrt[(5 - Sqrt[5])/10]}, {-Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2,
Sqrt[(5 - Sqrt[5])/10]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, -Sqrt[(5 - Sqrt[5])/10]},
{Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, -Sqrt[(5 - Sqrt[5])/10]}, {-Sqrt[1/2 + 1/(2*Sqrt[5])], 0,
-Sqrt[(5 - Sqrt[5])/10]}, {Sqrt[1/2 + 1/(2*Sqrt[5])], 0, Sqrt[(5 - Sqrt[5])/10]},
{-Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4, -Sqrt[(5 - Sqrt[5])/10]},
{-Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4, -Sqrt[(5 - Sqrt[5])/10]},
{Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4, Sqrt[(5 - Sqrt[5])/10]},
{Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4, Sqrt[(5 - Sqrt[5])/10]},
{-Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, 0}, {-Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, 0},
{Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, 0}, {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, 0},
{-Sqrt[5/4 + Sqrt[5]/2], -1/2, 0}, {-Sqrt[5/4 + Sqrt[5]/2], 1/2, 0}, {Sqrt[5/4 + Sqrt[5]/2], -1/2, 0},
{Sqrt[5/4 + Sqrt[5]/2], 1/2, 0}}, Polygon[{{12, 4, 3, 11, 8}, {4, 12, 2, 14}, {3, 4, 18, 17},
{11, 3, 13, 1}, {8, 11, 15, 19}, {12, 8, 20, 16}, {16, 2, 12}, {14, 18, 4}, {17, 13, 3}, {1, 15, 11},
{19, 20, 8}, {5, 9, 7, 10, 6}, {2, 16, 6, 10}, {18, 14, 10, 7}, {13, 17, 7, 9}, {15, 1, 9, 5},
{20, 19, 5, 6}, {6, 16, 20}, {10, 14, 2}, {7, 17, 18}, {9, 1, 13}, {5, 19, 15}}]]]

In[864]:=

Out[864]=

In[865]:=

Out[865]=

In[866]:=

Out[866]=

Johnson Polyhedra

Geometry

Index

Scientific Library - Scientificlib.com