Hellenica World

Icosidodecahedron

In[30]:=

"Icosidodecahedron_3.gif"

Out[30]=

"Icosidodecahedron_4.gif"

In[31]:=

"Icosidodecahedron_5.gif"

Out[31]=

"Icosidodecahedron_6.gif"

In[32]:=

"Icosidodecahedron_7.gif"

Out[32]=

"Icosidodecahedron_8.gif"

In[33]:=

"Icosidodecahedron_9.gif"

Out[33]=

"Icosidodecahedron_10.gif"

In[34]:=

"Icosidodecahedron_11.gif"

Out[34]=

"Icosidodecahedron_12.gif"

In[35]:=

"Icosidodecahedron_13.gif"

Out[35]=

"Icosidodecahedron_14.gif"

In[36]:=

"Icosidodecahedron_15.gif"

Out[36]=

"Icosidodecahedron_16.gif"

In[37]:=

"Icosidodecahedron_17.gif"

Out[37]=

"Icosidodecahedron_18.gif"

In[38]:=

"Icosidodecahedron_19.gif"

Out[38]//InputForm=

Graphics3D[GraphicsComplex[{{0, (-1 - Sqrt[5])/2, 0}, {0, (1 + Sqrt[5])/2, 0}, {Sqrt[1/8 - 1/(8*Sqrt[5])], (-1 - Sqrt[5])/4, -Sqrt[1 + 2/Sqrt[5]]},
   {Sqrt[1/8 - 1/(8*Sqrt[5])], (1 + Sqrt[5])/4, -Sqrt[1 + 2/Sqrt[5]]}, {Sqrt[1/8 + 1/(8*Sqrt[5])], (-3 - Sqrt[5])/4, Sqrt[(5 + Sqrt[5])/10]},
   {Sqrt[1/8 + 1/(8*Sqrt[5])], (3 + Sqrt[5])/4, Sqrt[(5 + Sqrt[5])/10]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, Sqrt[1 + 2/Sqrt[5]]},
   {Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, Sqrt[1 + 2/Sqrt[5]]}, {Sqrt[5/8 + 11/(8*Sqrt[5])], (-1 - Sqrt[5])/4, Root[1 - 5*#1^2 + 5*#1^4 & , 1, 0]},
   {Sqrt[5/8 + 11/(8*Sqrt[5])], (1 + Sqrt[5])/4, Root[1 - 5*#1^2 + 5*#1^4 & , 1, 0]}, {-Sqrt[1 + 2/Sqrt[5]], 0, Root[1 - 5*#1^2 + 5*#1^4 & , 1, 0]},
   {-Sqrt[1 + 2/Sqrt[5]]/2, -1/2, -Sqrt[1 + 2/Sqrt[5]]}, {-Sqrt[1 + 2/Sqrt[5]]/2, 1/2, -Sqrt[1 + 2/Sqrt[5]]}, {Sqrt[1 + 2/Sqrt[5]], 0, Sqrt[(5 + Sqrt[5])/10]},
   {Sqrt[5/8 + Sqrt[5]/8], -(1 + Sqrt[5])^2/8, 0}, {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, 0}, {Sqrt[(5 + Sqrt[5])/10], 0, -Sqrt[1 + 2/Sqrt[5]]},
   {-Sqrt[(5 + Sqrt[5])/2]/2, -(1 + Sqrt[5])^2/8, 0}, {-Sqrt[(5 + Sqrt[5])/2]/2, (3 + Sqrt[5])/4, 0}, {-Sqrt[5 + 2*Sqrt[5]]/2, -1/2, 0}, {-Sqrt[5 + 2*Sqrt[5]]/2, 1/2, 0},
   {Sqrt[5 + 2*Sqrt[5]]/2, -1/2, 0}, {Sqrt[5 + 2*Sqrt[5]]/2, 1/2, 0}, {Root[1 - 5*#1^2 + 5*#1^4 & , 1, 0], 0, Sqrt[1 + 2/Sqrt[5]]},
   {Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0], (-1 - Sqrt[5])/4, Sqrt[(5 + Sqrt[5])/10]}, {Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0], (1 + Sqrt[5])/4, Sqrt[(5 + Sqrt[5])/10]},
   {Root[1 - 20*#1^2 + 80*#1^4 & , 1, 0], (-3 - Sqrt[5])/4, Root[1 - 5*#1^2 + 5*#1^4 & , 1, 0]}, {Root[1 - 20*#1^2 + 80*#1^4 & , 1, 0], (3 + Sqrt[5])/4,
    Root[1 - 5*#1^2 + 5*#1^4 & , 1, 0]}, {Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0], (-1 - Sqrt[5])/4, Sqrt[1 + 2/Sqrt[5]]},
   {Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0], (1 + Sqrt[5])/4, Sqrt[1 + 2/Sqrt[5]]}}, Polygon[{{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8},
    {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14},
    {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1},
    {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]]

In[39]:=

"Icosidodecahedron_20.gif"

Out[39]=

"Icosidodecahedron_21.gif"

In[40]:=

"Icosidodecahedron_22.gif"

Out[40]=

"Icosidodecahedron_23.gif"

In[41]:=

"Icosidodecahedron_24.gif"

Out[41]=

"Icosidodecahedron_25.gif"

In[42]:=

"Icosidodecahedron_26.gif"

Out[42]=

"Icosidodecahedron_27.gif"

Archimedean Solid

Geometry

Index

Scientific Library - Scientificlib.com