Hellenica World

Gyroelongated pentagonal cupola

In[554]:=

"GyroelongatedPentagonalCupola_2.gif"

Out[554]=

"GyroelongatedPentagonalCupola_3.gif"

In[555]:=

"GyroelongatedPentagonalCupola_4.gif"

Out[555]=

"GyroelongatedPentagonalCupola_5.gif"

In[556]:=

"GyroelongatedPentagonalCupola_6.gif"

Out[556]=

"GyroelongatedPentagonalCupola_7.gif"

In[557]:=

"GyroelongatedPentagonalCupola_8.gif"

Out[557]=

"GyroelongatedPentagonalCupola_9.gif"

In[558]:=

"GyroelongatedPentagonalCupola_10.gif"

Out[558]=

"GyroelongatedPentagonalCupola_11.gif"

In[559]:=

"GyroelongatedPentagonalCupola_12.gif"

Out[559]=

"GyroelongatedPentagonalCupola_13.gif"

In[560]:=

"GyroelongatedPentagonalCupola_14.gif"

Out[560]=

"GyroelongatedPentagonalCupola_15.gif"

In[561]:=

"GyroelongatedPentagonalCupola_16.gif"

Out[561]=

"GyroelongatedPentagonalCupola_17.gif"

In[562]:=

"GyroelongatedPentagonalCupola_18.gif"

Out[562]//InputForm=

Graphics3D[GraphicsComplex[
  {{0, (-1 - Sqrt[5])/2, -Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 -
        265545895321600*#1^3 - 3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 +
        3030095233024000*#1^7 + 3583731197542400*#1^8 & , 1, 0]},
   {0, (1 + Sqrt[5])/2, -Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 -
        265545895321600*#1^3 - 3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 +
        3030095233024000*#1^7 + 3583731197542400*#1^8 & , 1, 0]},
   {(-1 - Sqrt[5])/2, 0, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {Root[1 - 5*#1^2 + 5*#1^4 & , 4, 0], 0,
    Root[1 - 5*#1^2 + 5*#1^4 & , 3, 0] - Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 -
        265545895321600*#1^3 - 3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 +
        3030095233024000*#1^7 + 3583731197542400*#1^8 & , 1, 0]}, {Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0],
    (-1 - Sqrt[5])/4, Root[1 - 5*#1^2 + 5*#1^4 & , 3, 0] -
     Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0], (1 + Sqrt[5])/4,
    Root[1 - 5*#1^2 + 5*#1^4 & , 3, 0] - Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 -
        265545895321600*#1^3 - 3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 +
        3030095233024000*#1^7 + 3583731197542400*#1^8 & , 1, 0]},
   {(1 + Sqrt[5])/2, 0, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {Root[5 - 20*#1^2 + 16*#1^4 & , 1, 0], (-3 - Sqrt[5])/4,
    -Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {Root[5 - 20*#1^2 + 16*#1^4 & , 1, 0], (3 + Sqrt[5])/4,
    -Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {Root[5 - 20*#1^2 + 16*#1^4 & , 4, 0], (-3 - Sqrt[5])/4,
    -Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {Root[5 - 20*#1^2 + 16*#1^4 & , 4, 0], (3 + Sqrt[5])/4,
    -Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {Root[1 - 40*#1^2 + 80*#1^4 & , 1, 0], -1/2,
    Root[1 - 5*#1^2 + 5*#1^4 & , 3, 0] - Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 -
        265545895321600*#1^3 - 3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 +
        3030095233024000*#1^7 + 3583731197542400*#1^8 & , 1, 0]}, {Root[1 - 40*#1^2 + 80*#1^4 & , 1, 0], 1/2,
    Root[1 - 5*#1^2 + 5*#1^4 & , 3, 0] - Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 -
        265545895321600*#1^3 - 3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 +
        3030095233024000*#1^7 + 3583731197542400*#1^8 & , 1, 0]},
   {-1/2, Root[5 - 40*#1^2 + 16*#1^4 & , 1, 0], Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {-1/2, Root[5 - 40*#1^2 + 16*#1^4 & , 4, 0],
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {1/2, Root[5 - 40*#1^2 + 16*#1^4 & , 1, 0],
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {1/2, Root[5 - 40*#1^2 + 16*#1^4 & , 4, 0],
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {(-3 - Sqrt[5])/4, Root[5 - 20*#1^2 + 16*#1^4 & , 1, 0],
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {(-3 - Sqrt[5])/4, Root[5 - 20*#1^2 + 16*#1^4 & , 4, 0],
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {(3 + Sqrt[5])/4, Root[5 - 20*#1^2 + 16*#1^4 & , 1, 0],
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {(3 + Sqrt[5])/4, Root[5 - 20*#1^2 + 16*#1^4 & , 4, 0],
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {Root[5 - 40*#1^2 + 16*#1^4 & , 1, 0], -1/2,
    -Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {Root[5 - 40*#1^2 + 16*#1^4 & , 1, 0], 1/2,
    -Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {Root[5 - 40*#1^2 + 16*#1^4 & , 4, 0], -1/2,
    -Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}, {Root[5 - 40*#1^2 + 16*#1^4 & , 4, 0], 1/2,
    -Root[9607030429441 + 119077149816320*#1 + 412521362904960*#1^2 - 265545895321600*#1^3 -
        3381046121123840*#1^4 - 2030856201830400*#1^5 + 6490210421964800*#1^6 + 3030095233024000*#1^7 +
        3583731197542400*#1^8 & , 1, 0]}}, Polygon[{{19, 15, 17, 21, 7, 20, 16, 14, 18, 3}, {3, 18, 22},
    {18, 14, 8}, {14, 16, 1}, {16, 20, 10}, {20, 7, 24}, {7, 21, 25}, {21, 17, 11}, {17, 15, 2}, {15, 19, 9},
    {19, 3, 23}, {18, 8, 22}, {14, 1, 8}, {16, 10, 1}, {20, 24, 10}, {7, 25, 24}, {21, 11, 25}, {17, 2, 11},
    {15, 9, 2}, {19, 23, 9}, {3, 22, 23}, {6, 13, 12, 5, 4}, {13, 6, 2, 9}, {12, 13, 23, 22}, {5, 12, 8, 1},
    {4, 5, 10, 24}, {6, 4, 25, 11}, {11, 2, 6}, {9, 23, 13}, {22, 8, 12}, {1, 10, 5}, {24, 25, 4}}]]]

In[563]:=

"GyroelongatedPentagonalCupola_19.gif"

Out[563]=

"GyroelongatedPentagonalCupola_20.gif"

In[564]:=

"GyroelongatedPentagonalCupola_21.gif"

Out[564]=

"GyroelongatedPentagonalCupola_22.gif"

In[565]:=

"GyroelongatedPentagonalCupola_23.gif"

Out[565]=

"GyroelongatedPentagonalCupola_24.gif"

Johnson Polyhedra

Geometry