Hellenica World

.

In[362]:=

"ElongatedPentagonalRotunda_2.gif"

Out[362]=

"ElongatedPentagonalRotunda_3.gif"

In[363]:=

"ElongatedPentagonalRotunda_4.gif"

Out[363]=

"ElongatedPentagonalRotunda_5.gif"

In[364]:=

"ElongatedPentagonalRotunda_6.gif"

Out[364]=

"ElongatedPentagonalRotunda_7.gif"

In[365]:=

"ElongatedPentagonalRotunda_8.gif"

Out[365]=

"ElongatedPentagonalRotunda_9.gif"

In[366]:=

"ElongatedPentagonalRotunda_10.gif"

Out[366]=

"ElongatedPentagonalRotunda_11.gif"

In[367]:=

"ElongatedPentagonalRotunda_12.gif"

Out[367]=

"ElongatedPentagonalRotunda_13.gif"

In[368]:=

"ElongatedPentagonalRotunda_14.gif"

Out[368]=

"ElongatedPentagonalRotunda_15.gif"

In[369]:=

"ElongatedPentagonalRotunda_16.gif"

Out[369]=

"ElongatedPentagonalRotunda_17.gif"

In[370]:=

"ElongatedPentagonalRotunda_18.gif"

Out[370]//InputForm=

Graphics3D[GraphicsComplex[
  {{0, (-1 - Sqrt[5])/2, -1 - Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {0, (-1 - Sqrt[5])/2, -Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {0, (1 + Sqrt[5])/2, -1 - Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {0, (1 + Sqrt[5])/2, -Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {-Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4,
    -1 - Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {-Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4,
    -Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {-Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4,
    -1 - Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {-Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4,
    -Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4,
    -1 - Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4,
    -Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4,
    -1 - Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, -Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & ,
      3, 0]}, {-Sqrt[5/4 + Sqrt[5]/2], -1/2,
    -1 - Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {-Sqrt[5/4 + Sqrt[5]/2], -1/2, -Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {-Sqrt[5/4 + Sqrt[5]/2], 1/2, -1 - Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3,
      0]}, {-Sqrt[5/4 + Sqrt[5]/2], 1/2, -Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3,
      0]}, {Sqrt[5/4 + Sqrt[5]/2], -1/2,
    -1 - Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[5/4 + Sqrt[5]/2], -1/2, -Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[5/4 + Sqrt[5]/2], 1/2, -1 - Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[5/4 + Sqrt[5]/2], 1/2, -Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[(5 + 2*Sqrt[5])/5], 0, Sqrt[1/2 + 1/(2*Sqrt[5])] -
     Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[1/8 + 1/(8*Sqrt[5])], (-3 - Sqrt[5])/4, Sqrt[1/2 + 1/(2*Sqrt[5])] -
     Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[1/8 + 1/(8*Sqrt[5])], (3 + Sqrt[5])/4, Sqrt[1/2 + 1/(2*Sqrt[5])] -
     Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {-Sqrt[5/8 + 11/(8*Sqrt[5])], (-1 - Sqrt[5])/4, Sqrt[1/2 + 1/(2*Sqrt[5])] -
     Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {-Sqrt[5/8 + 11/(8*Sqrt[5])], (1 + Sqrt[5])/4, Sqrt[1/2 + 1/(2*Sqrt[5])] -
     Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {-Sqrt[1/2 + 1/(2*Sqrt[5])], 0, Sqrt[(5 + 2*Sqrt[5])/5] -
     Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {-Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4, Sqrt[(5 + 2*Sqrt[5])/5] -
     Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {-Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4, Sqrt[(5 + 2*Sqrt[5])/5] -
     Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, Sqrt[(5 + 2*Sqrt[5])/5] -
     Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]},
   {Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, Sqrt[(5 + 2*Sqrt[5])/5] -
     Root[1 - 3480*#1 + 567200*#1^2 + 2390400*#1^3 + 2228480*#1^4 & , 3, 0]}},
  Polygon[{{28, 26, 27, 29, 30}, {25, 26, 28}, {24, 27, 26}, {22, 29, 27}, {21, 30, 29}, {23, 28, 30},
    {12, 4, 23}, {8, 16, 25}, {14, 6, 24}, {2, 10, 22}, {18, 20, 21}, {4, 8, 25, 28, 23},
    {16, 14, 24, 26, 25}, {6, 2, 22, 27, 24}, {10, 18, 21, 29, 22}, {20, 12, 23, 30, 21},
    {19, 17, 9, 1, 5, 13, 15, 7, 3, 11}, {11, 3, 4, 12}, {3, 7, 8, 4}, {7, 15, 16, 8}, {15, 13, 14, 16},
    {13, 5, 6, 14}, {5, 1, 2, 6}, {1, 9, 10, 2}, {9, 17, 18, 10}, {17, 19, 20, 18}, {19, 11, 12, 20}}]]]

In[371]:=

"ElongatedPentagonalRotunda_19.gif"

Out[371]=

"ElongatedPentagonalRotunda_20.gif"

In[372]:=

"ElongatedPentagonalRotunda_21.gif"

Out[372]=

"ElongatedPentagonalRotunda_22.gif"

In[373]:=

"ElongatedPentagonalRotunda_23.gif"

Out[373]=

"ElongatedPentagonalRotunda_24.gif"

Johnson Polyhedra

Geometry

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home