Hellenica World

.

In[314]:=

"ElongatedPentagonalOrthobicupola_2.gif"

Out[314]=

"ElongatedPentagonalOrthobicupola_3.gif"

In[315]:=

"ElongatedPentagonalOrthobicupola_4.gif"

Out[315]=

"ElongatedPentagonalOrthobicupola_5.gif"

In[316]:=

"ElongatedPentagonalOrthobicupola_6.gif"

Out[316]=

"ElongatedPentagonalOrthobicupola_7.gif"

In[317]:=

"ElongatedPentagonalOrthobicupola_8.gif"

Out[317]=

"ElongatedPentagonalOrthobicupola_9.gif"

In[318]:=

"ElongatedPentagonalOrthobicupola_10.gif"

Out[318]=

"ElongatedPentagonalOrthobicupola_11.gif"

In[319]:=

"ElongatedPentagonalOrthobicupola_12.gif"

Out[319]=

"ElongatedPentagonalOrthobicupola_13.gif"

In[320]:=

"ElongatedPentagonalOrthobicupola_14.gif"

Out[320]=

"ElongatedPentagonalOrthobicupola_15.gif"

In[321]:=

"ElongatedPentagonalOrthobicupola_16.gif"

Out[321]=

"ElongatedPentagonalOrthobicupola_17.gif"

In[322]:=

"ElongatedPentagonalOrthobicupola_18.gif"

Out[322]//InputForm=

Graphics3D[GraphicsComplex[{{0, (-1 - Sqrt[5])/2, -1/2}, {0, (-1 - Sqrt[5])/2, 1/2},
   {0, (1 + Sqrt[5])/2, -1/2}, {0, (1 + Sqrt[5])/2, 1/2}, {Sqrt[1/2 + 1/(2*Sqrt[5])], 0,
    (-5 - Sqrt[10*(5 - Sqrt[5])])/10}, {Sqrt[1/2 + 1/(2*Sqrt[5])], 0, (5 + Sqrt[10*(5 - Sqrt[5])])/10},
   {Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4, (-5 - Sqrt[10*(5 - Sqrt[5])])/10},
   {Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4, (5 + Sqrt[10*(5 - Sqrt[5])])/10},
   {Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4, (-5 - Sqrt[10*(5 - Sqrt[5])])/10},
   {Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4, (5 + Sqrt[10*(5 - Sqrt[5])])/10},
   {-Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, -1/2}, {-Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, 1/2},
   {-Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, -1/2}, {-Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, 1/2},
   {Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, -1/2}, {Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, 1/2},
   {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, -1/2}, {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, 1/2},
   {-Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, (-5 - Sqrt[10*(5 - Sqrt[5])])/10},
   {-Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, (5 + Sqrt[10*(5 - Sqrt[5])])/10},
   {-Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, (-5 - Sqrt[10*(5 - Sqrt[5])])/10},
   {-Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, (5 + Sqrt[10*(5 - Sqrt[5])])/10}, {-Sqrt[5/4 + Sqrt[5]/2], -1/2, -1/2},
   {-Sqrt[5/4 + Sqrt[5]/2], -1/2, 1/2}, {-Sqrt[5/4 + Sqrt[5]/2], 1/2, -1/2},
   {-Sqrt[5/4 + Sqrt[5]/2], 1/2, 1/2}, {Sqrt[5/4 + Sqrt[5]/2], -1/2, -1/2},
   {Sqrt[5/4 + Sqrt[5]/2], -1/2, 1/2}, {Sqrt[5/4 + Sqrt[5]/2], 1/2, -1/2},
   {Sqrt[5/4 + Sqrt[5]/2], 1/2, 1/2}}, Polygon[{{22, 10, 4, 14}, {20, 22, 26, 24}, {8, 20, 12, 2},
    {6, 8, 16, 28}, {10, 6, 30, 18}, {18, 4, 10}, {14, 26, 22}, {24, 12, 20}, {2, 16, 8}, {28, 30, 6},
    {10, 22, 20, 8, 6}, {13, 3, 9, 21}, {23, 25, 21, 19}, {1, 11, 19, 7}, {27, 15, 7, 5}, {17, 29, 5, 9},
    {9, 3, 17}, {21, 25, 13}, {19, 11, 23}, {7, 15, 1}, {5, 29, 27}, {5, 7, 19, 21, 9}, {17, 3, 4, 18},
    {3, 13, 14, 4}, {13, 25, 26, 14}, {25, 23, 24, 26}, {23, 11, 12, 24}, {11, 1, 2, 12}, {1, 15, 16, 2},
    {15, 27, 28, 16}, {27, 29, 30, 28}, {29, 17, 18, 30}}]]]

In[323]:=

"ElongatedPentagonalOrthobicupola_19.gif"

Out[323]=

"ElongatedPentagonalOrthobicupola_20.gif"

In[324]:=

"ElongatedPentagonalOrthobicupola_21.gif"

Out[324]=

"ElongatedPentagonalOrthobicupola_22.gif"

In[325]:=

"ElongatedPentagonalOrthobicupola_23.gif"

Out[325]=

"ElongatedPentagonalOrthobicupola_24.gif"

Johnson Polyhedra

Geometry

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home