Hellenica World

.

In[278]:=

"ElongatedPentagonalGyrobicupola_2.gif"

Out[278]=

"ElongatedPentagonalGyrobicupola_3.gif"

In[279]:=

"ElongatedPentagonalGyrobicupola_4.gif"

Out[279]=

"ElongatedPentagonalGyrobicupola_5.gif"

In[280]:=

"ElongatedPentagonalGyrobicupola_6.gif"

Out[280]=

"ElongatedPentagonalGyrobicupola_7.gif"

In[281]:=

"ElongatedPentagonalGyrobicupola_8.gif"

Out[281]=

"ElongatedPentagonalGyrobicupola_9.gif"

In[282]:=

"ElongatedPentagonalGyrobicupola_10.gif"

Out[282]=

"ElongatedPentagonalGyrobicupola_11.gif"

In[283]:=

"ElongatedPentagonalGyrobicupola_12.gif"

Out[283]=

"ElongatedPentagonalGyrobicupola_13.gif"

In[284]:=

"ElongatedPentagonalGyrobicupola_14.gif"

Out[284]=

"ElongatedPentagonalGyrobicupola_15.gif"

In[285]:=

"ElongatedPentagonalGyrobicupola_16.gif"

Out[285]=

"ElongatedPentagonalGyrobicupola_17.gif"

In[286]:=

"ElongatedPentagonalGyrobicupola_18.gif"

Out[286]//InputForm=

Graphics3D[GraphicsComplex[{{0, (-1 - Sqrt[5])/2, -1/2}, {0, (-1 - Sqrt[5])/2, 1/2},
   {0, (1 + Sqrt[5])/2, -1/2}, {0, (1 + Sqrt[5])/2, 1/2}, {-Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2,
    (5 + Sqrt[10*(5 - Sqrt[5])])/10}, {-Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, (5 + Sqrt[10*(5 - Sqrt[5])])/10},
   {Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, (-5 - Sqrt[10*(5 - Sqrt[5])])/10},
   {Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, (-5 - Sqrt[10*(5 - Sqrt[5])])/10},
   {-Sqrt[1/2 + 1/(2*Sqrt[5])], 0, (-5 - Sqrt[10*(5 - Sqrt[5])])/10},
   {Sqrt[1/2 + 1/(2*Sqrt[5])], 0, (5 + Sqrt[10*(5 - Sqrt[5])])/10},
   {-Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4, (-5 - Sqrt[10*(5 - Sqrt[5])])/10},
   {-Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4, (-5 - Sqrt[10*(5 - Sqrt[5])])/10},
   {Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4, (5 + Sqrt[10*(5 - Sqrt[5])])/10},
   {Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4, (5 + Sqrt[10*(5 - Sqrt[5])])/10},
   {-Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, -1/2}, {-Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, 1/2},
   {-Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, -1/2}, {-Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, 1/2},
   {Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, -1/2}, {Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, 1/2},
   {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, -1/2}, {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, 1/2},
   {-Sqrt[5/4 + Sqrt[5]/2], -1/2, -1/2}, {-Sqrt[5/4 + Sqrt[5]/2], -1/2, 1/2},
   {-Sqrt[5/4 + Sqrt[5]/2], 1/2, -1/2}, {-Sqrt[5/4 + Sqrt[5]/2], 1/2, 1/2},
   {Sqrt[5/4 + Sqrt[5]/2], -1/2, -1/2}, {Sqrt[5/4 + Sqrt[5]/2], -1/2, 1/2},
   {Sqrt[5/4 + Sqrt[5]/2], 1/2, -1/2}, {Sqrt[5/4 + Sqrt[5]/2], 1/2, 1/2}},
  Polygon[{{14, 6, 5, 13, 10}, {6, 14, 4, 18}, {5, 6, 26, 24}, {13, 5, 16, 2}, {10, 13, 20, 28},
    {14, 10, 30, 22}, {22, 4, 14}, {18, 26, 6}, {24, 16, 5}, {2, 20, 13}, {28, 30, 10}, {7, 11, 9, 12, 8},
    {3, 21, 8, 12}, {25, 17, 12, 9}, {15, 23, 9, 11}, {19, 1, 11, 7}, {29, 27, 7, 8}, {8, 21, 29},
    {12, 17, 3}, {9, 23, 25}, {11, 1, 15}, {7, 27, 19}, {21, 3, 4, 22}, {3, 17, 18, 4}, {17, 25, 26, 18},
    {25, 23, 24, 26}, {23, 15, 16, 24}, {15, 1, 2, 16}, {1, 19, 20, 2}, {19, 27, 28, 20}, {27, 29, 30, 28},
    {29, 21, 22, 30}}]]]

In[287]:=

"ElongatedPentagonalGyrobicupola_19.gif"

Out[287]=

"ElongatedPentagonalGyrobicupola_20.gif"

In[288]:=

"ElongatedPentagonalGyrobicupola_21.gif"

Out[288]=

"ElongatedPentagonalGyrobicupola_22.gif"

In[289]:=

"ElongatedPentagonalGyrobicupola_23.gif"

Out[289]=

"ElongatedPentagonalGyrobicupola_24.gif"

Johnson Polyhedra

Geometry

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home